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Annot at ion 

This collection consists of articles devoted to vibrations, vibra- 
tion strength of aircraft engine components and the stability of three- 
layer shells. These papers deal with vibrations of turbomachine rotors 
and methods for determining optimal parameters of hydraulic damping 
mounts, the vibrations of systems with friction and determination of 
their dynamic compliance, as well as self-induced vibrations of com- 
pressor blades. A design method taking into account the vibration of 
variable-thickness disks and an analysis of the operation of a hydro- 
static bearing as a source of shaft vibrations are presented. These 
papers are intended for scientific workers and engineers of the aircraft 
engine industry, as well as of the power and transportation industries. 
It may be useful to instructors and students of senior courses in these 
specializations. 
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FOREWORD 

Over several years the Moscow Aviation Institute has conducted 
studies on vibration, strength and stability of aircraft engine compo- 
nents. The present collection contains a brief description of some of 
these studies. 

- / 3 *  

The first four articles - by Docent A. N. Ogurechnikov, Docent Cand- 
idate of Technical Sciences K. A. Kryukov, engineers V. M. Balepin and 
Ye. A. Artemov - are devoted to the problem of critical rpm of gas tur- 
bine rotors. 
shaft carrying eccentric point masses and obliquely seated disks and 
prove the validity of Wiedler's postulate for systems executing flexural 
oscillations; they also present methods for determining the optimal param- 
eters of turbomachinery rotor mounts and the compliancP of a system with 
friction. In addition, they analyze forced vibrations of a free shaft 
with friction and give an overall method for calculating them. These 
articles are continuations of the papers previously published in Trans- 
actions of the Moscow Aviation Institute (Issues No. 74, 1956; No.100, 

They describe the shape of the elastic curve of a weightless 

'1959 and No. 136, 1961). 

The article of Candidate of Technical Sciences I. M. Movshovich is 
devoted to the study of self-induced vibrations in axial compressors, a 
phenomenon encountered in modern machinery. Here, blade assemblies of 
the same design and manufacture start to vibrate at different initial air 
stream pressures. Movshovich shows what must be done to tune the blade 
assembly to the highest initial air stream pressure. 

The remaining articles deal with the vibrations in certain aircraft 
engine components and the determination of their stability. Thus, engi- - / 4  neer A .  V. Karpov presents a variational method for calculating the vibra- 
tions of variable-thickness disks. Candidate of Technical Sciences 
G. A. Ivanov is concerned with the hydrostatic bearing as a source of 
rotor vibrations and points out a method for eliminating them. Candidate 
of Technical Sciences V. V. Serdyukov gives a method for calculating the 
stability of a three-layer shell beyond the elastic limit. Candidate of 
Technical Sciences V. B.  Gorlov considers the use of conformal mapping in 
problems of the theory of elasticity. Candidate of Technical Sciences 
I. A. Yefimov examines the stability of three-layer cylindrical shells in 
the elastic and nonelastic regions, and presents a method for determining 
critical loads in the case of combined action of an axial force and 
lateral pressure on such a shell with a longitudinal and transverse 
corrugated filler. 

G. Skubachevskiy 
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THE SHAPE OF THE ELASTIC CURVE OF A WEIGHTLESS ROTATING SHAFT 
CARRYING ECCENTRICALLY LOCATED POINT MASSES OR DISKS 

Docent A. N. Ogurechnikov 

The study of the shape of the elastic curve of a rotating shaft which 
precesses as it undergoes resonance vibrations is of no particular practi- 
cal significance, since the theoretical basis in calculating the vibration 
frequency is Wiedler postulate, in which the elastic curve is regarded as 
plane, and its shape during resonance is assumed to be similar to that of 
the elastic curve in unrestrained oscillation. However, it is quite fre- 
quently claimed that the elastic curve of a vibrating shaft, by virtue of 
the different directions of eccentricities of its associated masses, is 
actually a space curve. This assertion, which is entirely correct .for 
forced vibrations of a shaft, becomes invalid when extended to the case of 
resonance vibrations. 

The elastic curve of a shaft undergoing precession during resonance 
vibrations must be a plane curve, since the shaft vibrates in all axial 
planes with the same frequency; thus, all the projections of the outline 
of the elastic curve onto these planes should be similar, which can occur 
only if the elastic curve is a planar one. 

Academician B. S .  Stechkin has rigorously proven the validity of 
Wiedler's postulate for systems executing torsional vibrations. We shall 
prove the validity of this postulate for systems which execute flexural 
vibrations, namely: 

1) for a shaft with two eccentrically located point masses; 
2) for a shaft carrying an eccentrically coupled point mass and an 

obliquely seated ideal thin disk. 

Without detriment to the generality of proof, we shall consider the 
I case of direct synchronous precession, where the eccentricities and the 

torque transmitted to the shaft by the drive are the sources of the 
vibrations. 

A PERFECTLY ELASTIC WEIGHTLESS SHAFT 
WITH TWO ECCENTRICALLY COUPLED POINT MASSES 

A schematic of the shaft system is shown in Fig. 1. The axis of the 
system at rest is denoted by point 0. We use the notation: e and e - -1 -2 
eccentricities of the coupled point masses; 2r - angle between the direc- 
tion of above eccentricities; m and m - point masses coupled to the -1 -2 
system; 0 
sections passing through the sites of coupling of the point masses; 

and fi2 - points of the elastic curve of the bent shaft at the -1 

- 
*Numbers in the margin indicate pagination in the foreign text. 
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Figure  1. The Pro- 
j e c t  ion  of t h e  E l a s t i c  
Curve of 2. Shaft  with 
Two Point  Masses onto 
a Plane Perpendicular  

t o  i t s  Axis. 

y and 2 - coordinate  axes; h e r e  y i s  t h e  a x i s  - 16 
p a r a l l e l  t o  t h e  b i s e c t o r  of angle  2. r ;  (P1 and 

q2 - d i r e c t i o n  angles  of t h e  s h a f t  de f l ec t ions .  

When the  s h a f t  r o t a t e s  wi th  v e l o c i t y  w 
lower than t h e  c r i t i ca l  one, a d i r e c t  synchro- 
nous precession ensues. Due t o  t h e  eccent r ic -  
i t ies e and e of t h e  coupled masses m and -1 -2 -1 
m the  s h a f t  a x i s  w i l l  be  de f l ec t ed  and thus  -2 
become a s p a t i a l  curve; t h e  s h a f t  s e c t i o n s ,  t o  
which these  masses a r e  connected, w i l l  occupy 
pos i t i ons  0 and g2. -1 

Since 

Q # f c r  

t h e  s h a f t  d e f l e c t i o n s  are descr ibed by 

y1 =bl + el cos %> m 1 w 2 h  + (y2 + e, cos r) m,o28,,; 

y2 = (y, -+ e, cos T) ; n , 0 j 2 B I 2  + (y, -+ e, cos r) m2o28,,; 

x, = (x ,  - e, sin z) m,w22,, + (x,  + e2 s i n  z) m,&,,; 
x2=(xI --e, s i n r )  m , ~ ~ ~ ; J , , - f - ( x , + e ~ s i n r ) m ~ o 2 8 ~ ~ ,  

where i l l ,  321, 222 are t h e  compliances of t h e  s h a f t .  I f  we denote 

e, cos T = Bl;  
e, sin r=O,; 
m,w*E, , = I t l ,  ; 

e2 cos r = 8,; 
e, sin r = 0 2 ;  

n lu?8 , ,  = n12; 
" z 2 O 2 L Z 2  =n,,; m2022,, =It21, 

then t h i s  system of equat ions can be w r i t t e n  as 

91 ( % I  - 1 ) + w h =  - *,%,-%n21: 

Yl'tlZ + Yz ('%? - 1) = - Q,, - 9,n,,; 
XI (rill - l ) t x ,n , ,=O, '~ , ,  -Ozn,,; 
xl~~12'+x2 (nzz - 1) = O,n,, - f&,,. 

2 



A s  can be seen, t h i s  system of equat ions conta ins  two p a r t s :  t he  f i r s t  two 
equat ions contain only y1 and y2, while  t h e  l a s t  two conta in  only zl and 

-2' 

- 17 

X 

The determinant composed of c o e f f i c i e n t s  of t h e  unknown y, and y2 
(of t h e  f i r s t  two equat ions)  i s  

up= (nl] - 1) (1222 - 1) - ~12%!1. 

The va lue  of yl is  t h e  f r a c t i o n  

where A y  
by rep lac ing  the  f i r s t  column by the  column of f r e e  terms 

is  a determinant which i s  obtained from t h e  system's determinant 1 

AY1= -(f+,n,, - t ~ z % ) ( ~ 2 2  - 1)+(aln,2+~2n22)n21, 

and, consequently, 

Simi la r ly ,  

and 

The determinant composed of c o e f f i c i e n t s  of unknown x and x (of t h e  -1 -2 two l a s t  equat ions)  i s  

Dr=(n,l - 1) ( a 2 2  - 1) - n,,n,,=&; 
AX1 =(fj,n,,- %nzJ (n22 - 1) - ( ~ l n l ,  - %n22) $1, 

hence we f i n d  i n  the  same manner as above 

and, us ing  t h e  expression 

3 



we get 

17 

From the deflection coordinates thus found we can obtain the deflec- /8 
tions themselves 

as well as the angles between the direction of deflections and the 1 axis 

X1 X? 

Y l  YZ 
tan = - and tan y2 = -. 

Let us now ask two questions: 1) is the elastic curve of the shaft 
planar? 2) How do angles cp and cp vary with changes in the rpm? 1 2 

1 If the elastic curve of the shaft is to be planar, then angles cp 

2 andp must be equal, i.e., the ratios 

- and 2, 
Y1 Y2 

must be equal; representing this in terms of previously found values of 
- x and 11 

and 

We first consider two cases: 1) if 27 = 0 and consequently r = 0 ,  
i.e., if the eccentricities are codirectional away from the shaft, then 

and 

6,=0 and O,=O. 

4 



It can be seen from t h e  expressions f o r  x and x t h a t  t h e  numerators 

= 0 and cp2 = 0 ,  s i n c e  the  denominators then are not  
-1 -2 

become zero s o  tha tcp  

zero.  

as Dx = D 

when 11 # 11 cr. 

1 
Then a l s o  y1 # 0,  and y2 # O ,  s ince  a1 # 0 and B 2  # 0.  A s  far  

# 0 i s  concerned, t h e  expressions f o r  t h e s e  terms are f i n i t e  Y 

- 
m e n w = w  D = E  = D  = o , o r  

cr '  - -- -Y 

s i n c e  t h e  l a s t  expression i s  a pe r iod ic  equat ion when w r i t t e n  i n  t h e  
s tandard form. 

I n  analyzing t h e  f i r s t  case we see t h a t  when t h e  e c c e n t r i c i t i e s  a r e  
d i r ec t ed  i n  t h e  s a m e  d i r e c t i o n ,  t he  e l a s t i c  curve of t h e  s h a f t  w i l l  be 
p lanar  i f  

/9 Since -+ 1 as w + 0 and 
remains g r e a t e r  than zero f o r  
a l l  t h e  w < w c r ,  then the  

c r i t i c a l  angular  v e l o c i t y  
w is  smal le r  than the  par- cr  
t i a l  angular  v e l o c i t y  w p a r t '  Since 

- 

-L__..___- 

- c- 

Figure 2. The Shape of t h e  E l a s t i c  1 / ~  ; WZpart=1/ K2 1 W1 part 
m l h  Curve of a Shaft  Rota t ing  a t  Subcri t -  

i c a l  Speed. 

and f u r t h e r  0 < G~~ < 1 and 0 < zll < 1 when n,,>O and nzl>O, 

then 

5 



Consequently, at w < w cr ' 
rection of the initial eccentricities (Fig. 2). 

the elastic curve has a deflection in the di- 

When the speed is raised by an infinitessimal increment above the 
critical, the sign of the determinant will change to minus and therefore 
the deflections y 1 and y2 will become negative (Fig. 3 ) .  

and y2 -f - e (Fig. 4 ) ,  since 2 When w -f m - e -1 

and 

2)  If the eccentricities are oppositely directed, so that 

from which 

then, when w # w one obtains cr' 

and 

Under these conditions the elastic curve will lie in the plane of the 
axis. 

6 
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Figure 3. The Shape of t h e  
E l a s t i c  Curve of a Shaf t  
Rot a t  i n g  a t  Supe rc r i t  i c a l  

Speed. 

Figure 4. Schematic of a 
Cant i levered Weightless 
E l a s t i c  Shaft  Carrying Two 

Point  Masses. 

For s m a l l  w (as  compared wi th  w and w ) D>O, nlln22>n12n1. and cr p a r t  
t h e  s ign  of x w i l l  depend on t h e  s i g n  of t he  expression -1 

Analysis of t h i s  expression shows t h a t  i f  w e  neglec t  u4 and d i v i d e  t he  

expression by w2, w e  w i l l  f i n d  t h a t  the  s ign  of x depends on the  s i g n  

of t h e  express  ion  e ~ t r 1 2 ~ 2 ~ - - e ~ m ~  6, I .  

-1 

Proceeding i n  t h e  same manner, t h e  s i g n  of w i l l  depend on t h e  s ign  
of 

e2m282, - e1m181,. 

I f  w + 0, then 

7 



We now find angles cp and cp for w >> w and for any angle 2-r 1 2 cr 

Consequently, 

from which 

Comparing the expressions just obtained with those for tan cp and 

2 

1 
tan cp derived at low rpm, we see that the multiplier of tan cp in the 

latter equation contains fractions not equal to unity. Consequently, 
angles cp and cp depend on the shaft rpm. 1 2 

We shall now consider a system in resonance. If it is assumed that 
the shaft resonance amplitude is limited by frictional forces and that 
the resonance vibrations become steady if the system is operating in 
vacuum, and,furthermore, assuming perfect (:.e., frictionless) bearings 
we will have to assume that the amplitude will have to be limited by the 
friction between the fibers of the shaft. 

A s  is known from literature and as can be seen from one case of angle 
2-r = 0, when the system passes through the critical velocity, the direc- 
tions of eccentricities relative to the elastic curve of the shaft shift 



by t h e  amount IT. 

phase s h i f t  i s  7r/2 i n  t h e  d i r e c t i o n  of t h e  r o t a t i o n ;  i . e . ,  a t  t h e  i n s t a n t  
when t h e  system goes i n t o  resonance, t h e  s h a f t  i s  twis ted  about t he  a x i s  
of t h e  e las t ic  curve. This a l s o  should happen i n  a system wi th  any value 
o f  2r. I n  t h i s  case, s i n c e  even a t  resonance t h e  angle  between t h e  d i rec-  
t i o n s  of e c c e n t r i c i t i e s  should remain 2 r  (we s h a l l  neg lec t  t h e  t o r s i o n a l  
deformations of t h e  s h a f t ) ,  t h e  s h a f t  o f  our system w i l l  be  twis ted  so 
t h a t  t he  d i r e c t i o n s  of t h e  e c c e n t r i c i t i e s  w i l l  form angles  r wi th  t h e  1 
ax i s .  

It i s  a l s o  known t h a t  a t  t h e  c r i t i c a l  v e l o c i t y ,  t h e  

From t h e  expressions der ived above f o r  q1 and q2, w e  can w r i t e  equa- 112 - 
t i o n s  f o r  w = w cr 

W e  c o l l e c t  some terms of t h e  numerator and denominator i n  parenthe- 
ses, and reduce the  expressions i n  parentheses  t o  t h e  form 

o r  

9 



W e  f i n d  t h e  r a t i o  

S imi la r ly ,  

When w -+ 0 and - n + 0, and neglec t ing  t h e  product ( s i k . k ) ,  w e  f i n d  
- 

We s h a l l  now prove t h a t  t h e  e l a s t i c  curve of a s h a f t  r o t a t i n g  a t  
c r i t i ca l  speed is  a p lanar  curve. This i s  equiva len t  t o  t h e  condi t ion  

t h a t  

o r ,  i f  we use  t h e  previously obtained expressions f o r  t h e  tangents ,  t o  

W e  s h a l l  show t h a t  t h i s  equa l i ty  r e a l l y  holds  

10 



W e  remove t h e  parentheses  

Canceling out i d e n t i c a l  terms [of opposi te  s ign] ,  f a c t o r i n g  out  and 
d iv id ing  through by e e w e  s a t i s f y  ourse lves  t h a t  t he  remaining terms 

add up t o  2 = 0, and hence t h e  d i f f e rence  i n  s ign  does no t  disprove the  
i d e n t i t y  of t h e  expressions.  

-1-2 ’ 

It i s  thus proven t h a t  t h e  e las t ic  curve of a s h a f t  carrying two 
e c c e n t r i c a l l y  coupled po in t  masses with d i f f e r e n t l y  d i r ec t ed  eccen t r i c i -  
t i es  and r o t a t i n g  a t  c r i t i c a l  speed i s  a p lanar  curve. 

A PERFECTLY ELASTIC WEIGHTLESS SHAFT 
CARRYING AN ECCENTRICALLY COUPLED POINT MASS 
AND AN OBLIQUELY SEATED PERFECT THIN D I S K  

L e t  t he re  be a weight less ,  e las t ic  cant i levered  s h a f t  car ry ing  a 
po in t  mass and an obl ique ly  sea ted  d i s k  (Fig. 5 ) .  The d i r e c t i o n s  of t he  
e c c e n t r i c i t y  and of t he  obl iqueness  form an angle  2 ~ .  

The coordinate  axes y and x a r e  assoc ia ted  wi th  t h e  s h a f t ,  but  i n  
such a manner t h a t  on r o t a t i o n  t h e  1 a x i s  d iv ides  angle  2~ i n t o  two equal  
p a r t s ;  i . e . ,  t h e  a x i s  i s  p a r a l l e l  t o  t h e  b i s e c t o r  of t h i s  angle.  

We in t roduce  t h e  no ta t ion :  m - t h e  po in t  m a s s ’  e - t he  eccent r ic -  -1 ’ -1 
i t y  of t h i s  m a s s ;  ct - t h e  angle  of skewness of t h e  d i s k  ( a  s m a l l  quan- 
t i t y ) ;  e 2  - t h e  e q u a t o r i a l  moment of i n e r t i a  of t he  d i s k  mass. 

If t h e  skewness of the disk  i s  expressed i n  terms of i t s  s h i f t  
(from v e r t i c a l )  at  r ad ius  r, t hen  

11 



Yt 
Figure 5. Schematic of a Canti- 
levered Weightless,  E l a s t i c  
Shaft  Carrying a Point Mass and 

3 
an Obliquely Seated Disk. 

f 
Making use of t h e  f a c t  t h a t  t h e  skewness i s  s m a l l ,  we w r i t e  

a 
r 

a=--. 

The angles made by t h e  skew d i s k  with axes and 1 ~ _  a r e  

a cose 
r 

tan a#=-- - tan (Y cos T ;  

a sin e- 
and a, = - - tan (Y sin T 

r 

or 

al/=acosz and a,=asin.t.. 

We now write the equation of shaft deformations when the shaft 
rotates at any w # w cr 

g1 =(y1/n1W2-J- to?Cf/f l  cos a) 1,,, 1- 0, (a, - y2) cu22,,; 

~ ~ = ( g , n i ~ w ? ~ - c ~ ) ? e m ~ ,  COST)  B,,+ 0 , ( a , - y z ) ~ 2 i 2 3 ;  
~,,=(y1rn1(u? ~ - C ~ J ? C I I Z ,  COS a ) i ; 1 2 + ~ 2 ( a y - ~ z ) ~ 2 2 2 1 .  

We introduce the notation 

Then, Eqs. (1 ) and (3) form an independent system 

whose determinants are 

1 2  



and 

Consequently, 

y --andcpZ=- AYI  4 2  
D D' 

1 The coordinate 2 

2 

of the second equation is written in terms of y 3 and cp in the form 

Y3=Yln13+ 81n13+aYn23 -cpzn,. 

Setting up the equations of deformations in the - x direction, we get 

The first two of these equations form the system 

the determinant of which is 

The determinant, as should have been expected, proves to be the same 
as for the system of equations for deformations (yl, cp) 

AX, = - 8, ( N 111122 - 11 ,,n2, + i t l l )  -+ a,rzZ1: 
A V ~ =  - a , ( 1 1 ~ ~ t 1 ~ ~ - t 1 ~ ~ 1 t ~ ~  - - ~ ~ ~ ) - f J ~ n , , ;  

and 

13 
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We now seek the tangents of the angles of deflection of the shaft /16 
sections as w -t 0 

We shall find the direction angles of the deflections of the elas- 
tic curve as w -t m; here we shall drop all terms containing w raised to 
the lowest powers 

yl= -a,= -ecoss, 

lim AX, = - 9, (n11n22 - nlZnZ1), 
Po 

uI+- 

Ax1 - - - (~, ln22--12n21) - -81. l i m x  --- -((n 
W-rDD ’- D 11 22 - n12n21) 

X ,  = = e  sin%, 
u I - t D D  

tan ‘91 = 3 =; - tan T; 
Y1 

Let us consider the state of the system when it rotates at critical /17 velocity 

or 



If in the parentheses of the numerator and denominator we reduce the /17 
terms to 2, then 

Multiplying the numerator and denominatoryby D = 0 ,  we get -cr 

In this case, the third and fourth terms of the numerator and denomina- 
tor become zero. Then 

If it is assumed that the elastic curve of a shaft rotating at 
resonance speed is planar, then we must have 

However, this expression will hold only when it will be proven that the 
expressions in parentheses are proportional to the corresponding expres- 
sions outside of parentheses, which means that we must prove 

since 

We change to a somewhat different expression 

- - e  sin z.(nz2 + I )  + a sin z.nzl - - a s i n  r.(nll - I)_+-e sin 
e c o s r . ( n Z 2  + 1) + a C O S T . ~ ~ ~  

_________- . .  _. - -  
- acos  ~ . ( n , 1  - 1) - e  C O S ' F . ~ ~ ~  

Dividing through both sides of the expression by tan T and, cross multi- /18 
plying, we get 

We remove the parentheses 

15 



Cancelling out identical terms with opposite sign and dividing through 
by e, we get 

“ ( ~ , , ~ 2 4 + ~ 1 1  -n22- 1)---n,*51= 

= - a (n,p, + rill - n, - 1) -tan,2n2,. 

Then, factoring out ci and dividing through, we shall satisfy ourselves 
that the remaining expressions are equal to 2 = 0, which proves that 

as well as the assertion that when the system rotates at resonance rpm, 
the elastic curve of the shaft is a planar curve. 

It is also possible to prove the validity of the Wiedler postulate 
for systems more complex than those presented above, but this would only 
involve more complicated calculations without changing the substance of 
the argument. Thus, Wiedler’s postulate, stated as a theorem, has been 
proven. 

In closing, we present two numerical examples which illustrate the 
fundamental tenets of this article. 

Example 1 (see Fig. 4 ) .  Given an elastic, weightless bar, carrying 

-1 -2 -1 
and 

two eccentrically coupled point masses m 

and e ) at an angle 2-c from one another, find the critical speeds 0 
w2, p1 and cp 

at w = 0 and o = w .  

and m (with eccentricities e 

-2 1 - 
construct the elastic curve at critical rpm, as well as 

The system data listed above are tabulated below: 
2’ 

The matrix of effect coefficients is 

16 



The equation of Q, the natural frequencies of the system, is 

or 

88 3 
112 112 ’ 

9 4 - -  522 + - = O  

from which 

1 
1 =0.19 Q2 - _-. Q 

‘ - 2 8 ’  

and 

When w -+ 0 

Dividing by sin T = cos T and by 113, we find 

We now determine the angles of deflection of the shaft’s sections at 
the first critical speed 

17 



4 (0,386 - 1) + 2.0.714 1 - I . .- - -- - - - - 
4(0.1S6-1)-2.0.714 - 3 . 

From t h e  f a c t  t h a t  angles  (pl and cp a r e  equal ,  w e  can conclude t h a t  2 
t h e  e l a s t i c  curve of t h e  s h a f t  i s  p lanar  

W e  now f i n d  t h e  p ro jec t ions  of t h e  s h a f t ' s  d e f l e c t i o n s  a t  w -+ 00 

Example 2 ( see  Fig.  5 ) .  Given an e l a s t i c  weight less  b a r ,  car ry ing  
one e c c e n t r i c a l l y  coupled po in t  mass m 

i d e a l  d i s k  with moment of i n e r t i a  e 2  and skewness angle  0 1 ,  t h e  angle  be- 

tween t h e  d i r e c t i o n  of t h e  e c c e n t r i c i t y  and the  d i r e c t i o n  of skewness 
being 2a,  f i n d  t h e  c r i t i c a l  speed and the  coordinates  of d e f l e c t i o n s  f o r  
w w = O a n d w - + m .  

with e c c e n t r i c i t y  e and one -1 -1 

c r y  

18 



The matrix of effect coefficients is 

2 

4 

The equation for the frequency of direct synchronous precession is 

or 

1 1 
6 

Q4 - - 9 2  - - = 0. 
40 ' 

1 1 1 f 2.145 
9 2  = f-==- 

12 144 40 12 

Q = 0.512. 

When w + 0 

8 
3 
8 
3 

2.2.--33.0.1.2 

2.2.- + 3-0.1.2 
-- - 0,895; =- 

The angle of deflection of the elastic curve when the shaft rotates 
at critical r p m  is 

The tangent of the angle of displacement of the second angle is not 
calculated, since the equality of these angles was proven in the general 
case. 
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THE OPTIMUM HYDRAULIC DAMPING MOUNT FOR A TURBINE ROTOR 

Candidate of Technical  Sciences K. A. Kryukov 

Modern tu rb ine  engines used i n  t r anspor t a t ion  evolve toward h igher  
rpm and g r e a t e r  rpm range, as w e l l  a s  lower weight.  The weight reduc- 
t i o n s  usua l ly  r e s u l t  i n  lower r i g i d i t y  which i n  t u r n  inc reases  t h e  number 
of n a t u r a l  v i b r a t i o n  modes which must be considered i n  t h e  design.  A l l  
t h i s  r e s u l t s  i n  t h e  f a c t  t h a t ,  very f requent ly ,  t h e  proper s e l e c t i o n  of 
compliances of t h e  elements of t he  system does n o t  completely s h i f t  t h e  
resonance rpm beyond t h e  range of t h e  opera t ing  speeds.  Under these  con- 
di tTons,  s a f e  opera t ion  a t  c r i t i c a l  o r  n e a r - c r i t i c a l  rpm, a s  w e l l  as 
t r a n s i t i o n  through these  opera t ing  modes, i s  poss ib l e  only wi th  use of 
s p e c i a l  damping d e v i c e s [ l ,  61. 
reducing t h e  de f l ec t ions  of turbomachine s h a f t s  opera t ing  a t  c r i t i c a l  rpm 
i s  employment of hydraul ic  damping mounts [ 5 ,  71. 

One of t h e  most e f f e c t i v e  means f o r  

Reference [5] dea l s  wi th  forced v i b r a t i o n s  of a single-wheel r o t o r  
wi th  a damper, when both t h e  per turb ing  fo rce  and t h e  damper a r e  loca t ed  
i n  t h e  same sec t ion .  I n  t h i s  case the  e l a s t i c  curve of t h e  s h a f t  w i l l  
l i e  i n  a s i n g l e  plane.  I n  our case ,  t h e  po in t s  of app l i ca t ion  of t h e  per- 
tu rb ing  fo rce  and of t h e  f r i c t i o n a l  fo rce  a r e  n o t  t h e  same and, conse- 
quent ly ,  t he  e l a s t i c  curve of t h e  s h a f t  w i l l  be a s p a t i a l  curve. I f  we 
neg lec t  t h e  deformation of t he  s h a f t  i n  t h e  d i r e c t i o n  of t h e  f r i c t i o n a l  
fo rce ,  then,  by increas ing  t h e  damping r e s i s t a n c e  f a c t o r  i n  t h e  expres- 
s ion  f o r  t h e  d e f l e c t i o n  of t h e  s h a f t  t o  i n f i n i t y ,  i t  i s  poss ib l e  t o  
reduce t h i s  d e f l e c t i o n  t o  zero.  On t h e  o the r  hand, i f  one takes  i n t o  
account t he  s h a f t ' s  d e f l e c t i o n  i n  two mutually perpendicular  d i r e c t i o n s ,  
i t  fol lows from t h e  equat ion of t h e  s h a f t ' s  de f l ec t ion  t h a t  t he  smal les t  
d e f l e c t i o n  w i l l  occur a t  some optimum damping r e s i s t a n c e  f a c t o r ,  bu t  t h a t  
i n  a l l  t h e  o ther  cases t h e  amplitude of t h e  s h a f t ' s  d e f l e c t i o n  w i l l  be 
l a r g e r .  

We s h a l l  de r ive  and analyze t h e  expressions f o r  t h e  c r i t i c a l  s h a f t  
rpm by taking i n t o  account t he  deformation i n  the  d i r e c t i o n  of t h e  f r i c -  
t i o n a l  fo rce ,  t h e  dynamic i n t e n s i f i c a t i o n  f a c t o r ,  t h e  d e f l e c t i o n ,  t he  
angles  of displacement of t h e  de f l ec t ions  re la t ive t o  t h e  per turb ing  
fo rce ,  t h e  unbalance fo rce ,  t h e  stresses i n  t h e  s h a f t ,  and o the r  parame- 
ters. W e  s h a l l  a l s o  d i scuss  t h e  opera t ion  of a hydrau l i c  damping mount 
and s h a l l  g ive  a l t e r n a t e  methods f o r  s e l e c t i n g  optimum parameters when 
t h e  o i l  temperature increases .  F i n a l l y ,  w e  s h a l l  examine t h e  condi t ions  
under which deformation i n  t h e  d i r e c t i o n  of t h e  f r i c t i o n a l  f o r c e  can be 
neglected.  

The magnitude of t h e  required damping r e s i s t a n c e  f a c t o r  can be 
e s t ab l i shed  from t h e  t o l e r a b l e  de f l ec t ion  and stresses i n  t h e  s h a f t  and 
t h e  magnitude of t h e  unbalance force .  
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123 Figure 1 shows 
a cantilever system 
with one disk of mass 
m. The shaft is 
supported at point 2 
by a hydraulic damp- 
ing mount with a com- 

-I 

- 

pliance of 6 - -1 
02 - c02.  

The deflections at- 

the direction of axis 
C& are denoted by &* 
and A*, respectively, 
while those in the & 
directions are denoted 

2 2  

2 0 points 2 and 3 in 

Figure 1. Computational Schematic. A and $. We are 

considering steady-state motion. It is also assumed that at time + = 0 ,  
point 3 o f  the shaft is on B; i.e., that $ = 0 .  

The equation of equilibrium for forces applied at point 2 requires that 

- 

We now determine the displacement of point 2 in the & direction. 

Fz=(Co2$C32) (1) 

-1 where c22 = 622  is the transverse stiffness of the shaft at point 2. 

It follows from Fig. 2 that 

12 - - -  
E Z 2  = t i p  f (ok - n p )  ___ 

(11 + 12) .' 

where 

( 3 )  - -  - 
ok == EIQl and n.p = a&&. 

- 
- 124 Here, 6 and 6 are the displacements of points 1 and 3 of the shaft 1 2 

clamped at point 2, upon application of unit force at points 1 and 3 ,  
respectively. 

Substituting Eq. (3) into Eq. (2) and making use of the fact that 

we f i n d  
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Figure 2 .  Schematic f o r  De- 
termining t h e  Compliance of 
t h e  Shaft  i n  t h e  Qz d i r e c t i o n .  

W e  now cons ider  t h e  case of vis- 
cous f r i c t i o n ,  when 

where w i s  t h e  angular  v e l o c i t y  of t h e  
vec to r  of per turb ing  f o r c e  (which i s  
i d e n t i c a l  t o  t h e  angular  v e l o c i t y  of 
t h e  s h a f t  provided t h a t  g i s  produced 

by d i s k  imbalance), and 6 i s  t h e  viscous f r i c t i o n  c o e f f i c i e n t .  

Subs t i t u t ing  expressions ( 4 )  and (5) i n t o  Eq. (11, w e  f i n d  

where 

Here a r ep resen t s  t h e  r a t i o  of t h e  f r i c t i o n a l  fo rce  t o  t h e  r e s t o r i n g  

fo rce  exerted by t h e  mount a t  o = oI; 6 and 6 '  are t h e  compliances of 

t h e  system a t  po in t  2 ,  when supported by a compliant o r  a p e r f e c t l y  
r i g i d  mount, r e spec t ive ly ,  Eq. ( 1 4 ) ;  and o1 is  t h e  n a t u r a l  frequency of 
t h e  system a t  5 = 0. 

-1 

Using Eq. ( 7 ) ,  w e  can w r i t e  

- . ... 

where 
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Figure 3. Parameter 6 as Function of t h e  Sup- 
po r t  Compliance and t h e  Rat io  1 = 1 /,? . 

2 1  
- -- 

Figure 3 shows curves of s = 6 ( 8  ) f o r  d i f f e r e n t  1. It can be seen 
22- 

t h a t  6 v a r i e s  from 6 = 1 a t  6 = 0 t o  6 = 0 a t  6 = m. For a s h a f t  

with cons tan t  c ros s  s e c t i o n  
02 - 02 - 

- 
A s  can be seen from t h i s  expression,  6 = 0 when 1, = 0 o r  12 = 0.  

Examining Eq.  (7 )  w e  f i n d  t h a t  t h e  r a t i o  of t h e  n a t u r a l  f requencies  
with and without cons idera t ion  of t h e  mount compliance i s  

where mi=- ' 
p e r f e c t l y  r i g i d  mount. 

i s  t h e  n a t u r a l  frequency of t h e  system supported by a If x 

The graph of func t ion  w' i s  presented i n  Fig.  6 and holds  f o r  a l l  
va lues  of 6 

case, according t o  E q .  (7), 6 '  = 0 and 

and 1 with  t h e  except ion of t h e  case when 12 = 0. I n  t h a t  02 
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From Fig.  6 w e  n o t e  t h a t  a hydraul ic  mount sharp ly  reduces t h e  n a t u r a l  
frequency of t h e  system, p a r t i c u l a r l y  i n  t h e  reg ion  of s m a l l  6 .  

/26 

Returning t o  Eq. ( 6 )  w e  note  t h a t  r a t i o  A /A* i s  propor t iona l  t o  2 2  -2 
q u a n t i t i e s  5, w and 6. 
appl ied  a t  t h e  s a m e  po in t  (A2 = 0, 6 = 0) t h e r e  w i l l  be  no d e f l e c t i o n  i n  

t h e  
plane.  
curve. 

When t h e  per turbing and  f r i c t i o n a l  f o r c e s  are 

d i r e c t i o n  and t h e  e las t ic  cu rve  of t h e  s h a f t  w i l l  l i e  i n  a s i n g l e  
I n  a l l  t h e  o the r  cases (6  # 0 ) ,  t h e  e las t ic  curve w i l l  be  a space 

L e t  us now determine t h e  displacement A* of po in t  3 ( see  Fig.  1). 
The equat ion of f o r c e  equi l ibr ium i n  poin t  3 i s  

-1 where 6* = g* 
i s t e n c e  of f r i c t i o n  fo rce  F 

i s  t h e  compliance of t h e  system a t  po in t  3 ,  assuming ex- 

Y' 
When poin t  2 i s  de f l ec t ed  i n  t h e  d i r e c t i o n  of t h e  axis, t h e r e  a r i s e  

t h e  r e s t o r i n g  f o r c e  C 

displacement A*- i . e . ,  

A* and f r i c t i o n  f o r c e  F d i r e c t e d  oppos i te ly  t o  
-0 - 2-2 YY 

-2 ' 

Q2=CoZAf + FU. 

Using Eqs. ( 6 )  and (7)  w e  w r i t e  

From t h i s  t h e  compliance of t h e  hydraul ic  damper system i n  t h e  y di rec-  
t i o n  i s  

Turning t o  t h e  schematic shown i n  Fig.  4 ,  w e  w r i t e  

;'=Ob $ Z + ~ = 0 6 $ 1 2 t a n 8 $ 6 2 .  

Subs t i t u t ing  i n  t h i s  expression t h e  q u a n t i t i e s  

24 



and after the necessary transformations, /27 
we find an expression for the compliance 
of the systems at point 3. 

(13) f': ;; - (11 +w 
6 ' E - - ( l l + 8 2 +  - ~ ;2 a IT 1: 

or, when 6 = 0 (2 = 0): 
Figure 4. Schematic f o r  De- 
termining the Compliance of 

the System in the 
Direction. 

Making use of the above expression and of Eq.  ( 1 2 ) ,  we represent Eq.  
(13) as 

Introducing the notation 

we find from Eq.  (14a) at w = w* that 

We write this as 

The real root of this expression is 

or 

Here ii=a,/ao=E/Eo-is the ratio of the damping factor to 50 ,  which is its 
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li 
E-' 

optimum value [as given 
Eqs. ( 3 6 )  and (3811. 

Restricting our- 
selves to two terms of 
the binomial expansion of 
the radicand, we get an 
approximate expression 
for Gl: 

1 This yields values of W 
which are somewhat high, 
but it is sufficiently 
accurate for determining 
these values at small a -1 Figure 5. The Critical Speed as a Function 

of The Relative Damping Resistance Factor and 6. 
and of Parameter 6. 

We shall now clarify the effect of the damping resigtance factor 2 - 
on W Figure 5 presents curves of W = w (a) for some 6. Values of 

w1 vary from 1 when a = 0 ( E  = 0), smoothly increasing with an increase 

in a - and asymptotically approaching the values 

- 
1' 1 1 -  

- 

The physical meaning of this is that when the damping resistance increases 
to infinity, the mount becomes immovable and the natural frequency of the 
system becomes equal to its natural frequency when placed on an uncom- 
pliant support. -Note that Zl increases with - a at a higher rate in the 
case of smaller 6. 

We now write an equation of moments about point 0 (see Fig. 1) 

Using Eqs. (5) and ( 6 ) ,  we write this as 

/27 

/28 

/29 

According to Fig. 4 ,  
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Using Eqs. (12) and (14a), we write 

A; 602  (1 + ii 
A B (1 + aqx2;2"2) 
-= ~ 

Substituting the above into Eq. (20) and taking note of Eq. (7), we 
write 

I29 __ 

Squaring Eqs. (22) and (11) and then adding them, we find 

from which, using Eq. (14) and assuming that = mew2, we find 

where e is the eccentricity or displacements of the center of mass of 
the disk relative to the centers of the bearings at w = 0 ,  and 

or 

For convenience in subsequent analysis, we now present the two above ex- 
pressions as 

* 
When w = w the expression in square brackets in the denominator of 1) 



Eq.  ( 2 4 )  becomes zero according to E q .  (16), and then A* is /30 

or, according to E q .  (15) 

It is more convenient to write the last expression as 

The quantity A* is the dynamic intensification factor, showing the number 
of times by which the shaft deflection at the point of disk location ex- 
ceeds the eccentricity. A s  follows from E q s .  (24) and (25), A* varies 
from 0 at W = 0 to 1 at W = m ;  when w = w A* takes on the value A* 

* 
k’ - 1’ 

Figure 8 shows graphs of A* = A*(;) for several values of a at 6 = 
0.23 (see the example below). Turning to curves of Figs. 5 and 8, we 
note that the magnitudes o f  A* at small a - are virtually identical with 
the maximum dynamic load factor A* while w w 1 (see Fig. 5). For 

large Z the divergence between A*and A* (as well as between the i3 k m 
h 
(Fig. 8) A* = 1.67 for i;S 

k 
m’ k m  

and k - - - 
corresponding to them) becomes appreciable. 

m 

For example, at H = 1 

k 
m 

= 1.9 and A* = 1.245 when Ts = 1.273. 
- k - - m - 

When3 - = 0 (5 = O),  we get instead of E q .  (24) 

When 5 = m ( e  = m), we find from E q .  (26) 

/31 

When Z = 0, 6 = 0 according to Eq.  (7), and 
2 
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while when w = w (E = 1) 1 

where EC=2f/C,,m- is the critical damping factor. When 5 >,E, the 

free vibrations become an aperiodic limiting motion [3]. 
- 

Note-that irrespective of the magnitude of the relative damping re- 
sistance a, the curves of A* (Fig. 8) pass through a point with coordi- 
nates w and AZ1. Equating Eqs. (30) and (31) and making use of the, 

fact that l < ~ l l < > - ' - h 5 ,  we find 
11 

Substituting this value into Eqs. (30) and (31), we get 

It follows from curves of Eqs. (32) and (33) (Fig. 6) that, as 6 is made 
smaller, w increases infinitely while A* tends to unity. 11 11 

- It is easy to see from Eqs. (30) and (31) that A* goes to infinity 
- - 

when w = 1 and w = x-0*5, respectively. Consequently, when 5 = 0 and 
5 = m y  the damper in the mount does not operate. Indeed, the natural 
damping, which we have not taken into account, and which always exists 
in the engine system, causes large, although finite, shaft deflections. 
For example, rotors supported on rolling-contact bearings exhibit load 
factors on resonance which may range from 30 to -100 [6]. Operation at 
resonance rpm can, at worst, result in destruction of the rotor or the 
bearings, and in complete failure of the engine. 

We shall now determine the value of parameter gl = a+,, for which 

A* will be at minimum. 
to - a and equating the expression thus obtained to zero, we get 

Taking the derivative in Eq. (28) with respect k 

. -  
do] - 

=O. 
(1 - 6 )  

( 3 4 )  
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Differentiating Eq. (16) and per- 
forming the necessary transforma- 
tions, we get 

After substituting this expres- 
sion into Eq. ( 3 4 ) ,  we obtain 

The real root of this equation is 

( 3 5 )  - a --a - -1--o,s 
1- 0--wo 6 * 

Figure 6. Quantities 2, 5' 
A* and A i  As a Function of 6. 

- 11 

which quantity will, by means of Eq. ( 1 7 ) ,  be written as 

a o = , / y  

or, using Eqs. ( 7 )  and ( 8 ) ,  as 

The optimum damper resistance, according to E q .  ( 7 ) ,  is 

Substituting Eq. (36) into Eq. (28), we get 
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Figure 6 shows graphs of Q and Ato as a function of 6. It follows 

from these graphs that at small 6, A* a n d  A t l  are small. 
creases (6 > 0.7), the values of Ato and Afl increase sharply; i.e. , the 

When % in- kO - 
- 
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damper's operation becomes ineffective. The values of A* differ from 

those of X c o  only at small 6; for s > 0 . 4 ,  the values of AT1 and X i o  
virtually coincide. 

11 

- 

The deflection at the point where the disk is located corresponding 
to that given by Eq. ( 3 9 )  is, according to expression ( 2 3 ) ,  

2e VC. (40 )  
1 -a Aio= eLo=-- - .  

Upon dividing Eq. ( 2 9 )  by Eq. ( 3 9 )  and using Eq. ( 3 5 ) ,  we find that 

where 

There, A shows by how many times the shaft deflection at the point of  

disk location is larger than 

Fig. 7 for some values of x. 
to changes in the relative damping resistance factor a. 
f r o m  unity, A increases (more so at small a). 

when a - # 1. Equation 7 4 1 )  is plotted in 

Note that for small s, is more-sensitive 
When - a deviates 

Above, we have derived expressions for the deflections at points 2 
and 3 ,  taking into account the deformation in the z direction. If this 
deformation is neglected, Eqs. (23) and ( 2 4 )  simplify to 

A, = ek, ( 4 2 )  

where 

If 

The quantity 

/33 
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( 4 4 )  
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(28) (where deflection in the direction % Of Eq* shows how many times 
was taken into account) is greater than A+ (deflection neglected). It 

allows us to estimate the error which is introduced by neglecting this 
deflection, 
values of 2 this error is not appreciable and, conversely, when a is large 
(a > l), the error is very large, particularly at small 6. 

A s  follows from Eq. ( 4 4 )  and curves of Fig. 7, at small 

The deformation of the hydraulic damping mount (point 2 of Fig. 1) 
in the 1 direction is found from Eqs. (7) and (21) 

With reference to Eqs. (24) and (25), we write 

The total deformation at point 2, according to Eqs. (6) and (24), is 

where 

or 

Equation (45a) can also be written as 

- / 3 4  

/36 
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when 

If 5 -+ m (a -+ m), then, according to Eq.  (47) A$ -+ 0 for all E, 
- -1 

1 
- -  

except for w = w '  = 6-00.5.  
have 

In this last case, accordTng to E q .  ( 4 8 ) ,  we 

1 = - 
1 +i' 

(49) 

This value applies to all curves A* = A* (z) irrespective of the value of 
parameter 5; this is easy to see by substituting = 6-0 .5  i n t o  Eq.  (46). 

- 2 2  

- 
6 = 0.23. It can be seen that deflection of the elastic damper support 
(Fig. 9) are appreciably smaller than deflections at the point of the 
- disk location (Fig. 8 ) .  When a > 1, A* increases, going to infinity as 
a -+ m .  

of A* decreases further. 
limits of the curve of Eq.  ( 4 6 ) ;  in this case, this equation becomes 

Graphs of E q .  (46) are presented in Fig. 9 for some values of a for 

This does not happen to A*. 
At 2 = 0, the values of A* do not exceed the 

When 5 increases (5 > 1) , the value 2 - 

2 - 2 

The total frictional force, according to Eqs. (51, (44) and ( 4 6 1 ,  is 

The unbalance force which is transmitted to the aircraft structure and 
which produces vibrations in the latter, can be expressed as 

or, using the dimensionless form of Eq.  (45a) 
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Figure  7. Curves of A and as Functions of the Damper Resistance and Parameter T. - 



,A*- 10.4 
A' 
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Figure 8. The Dynamic Intensification Factor of Shaft De- 
flection at the Point of Location ofthe Disk as a Function 
of the Frequency and Magnitude of the Damper Resistance. 

Figure 9 .  The Dynamic Intensification of the Support De- 
flection, as a Function of the Frequency and Magnitude of 

the Damper Resistance. 
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We write this expression as 

The flexural stress in the transverse section of the shaft above the 
elastic damping support is given by 

where xD3 w=- 32 (l-g),and 

- D and 2 are the outside and inside diameters of the shaft. 
With reference to E q s .  (14a) and (24a), we write E q .  (54) in the 

following dimensionelss form 

o r  

Setting a = 0 in E q s .  (53) and (55), and a = 
with reference to E q s .  (30) and (31), we can 

Figures 10 and 
values of at 

- ll are curves of E and 0 as a 

m in E q s .  (53) and (56), and 
write 

function of W for several - _ _  - 
6 = 0.23 (see example). All the curves of = 8 (w) , 

36 



Figure 10.  The Unbalance Force as a Function of t h e  Fre- 
quency and Magnitude of t h e  Damping Resis tance.  

i r r e s p e c t i v e  of t h e  va lue  of F, i n t e r s e c t  i n  one po in t ,  t h e  coordinates  /40 
of which are 

- 
- 
(5 tend ( i r r e s p e c t i v e  of t h e  va lue  of ZJ i n  t h e  l i m i t  t o  

It i s  not  d i f f i c u l t  t o  show t h a t  a t  w increas ing  i n f i n i t e l y ,  and 

with t h e  except ion of t h e  case where = 0. I n  t h i s  l as t  case ,  when 
u + w  , w e  w i l l  have 
- 

Turning t o  curves  of F ig .  11, i t  can be seen t h a t  i n  t h e  region of w 
ranging from zero t o  75 = - w12, t h e  f r i c t i o n  i n  t h e  mount has  a favorable  

e f f e c t  on t h e  magnitude of t h e  unbalance f o r c e  and of t h e  stress i n  t h e  
s h a f t  by apprec iab ly  reducing them. 
angular  v e l o c i t i e s  l a r g e r  than V 12’  

On t h e  o the r  hand, i n  t h e  region of 
t h e  f r i c t i o n  i n  t h e  mount i s  an 
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Figure 11. The Stress in the Shaft as a Function of the 
Frequency and the Magnitude of the Damping Resistance. 

unfavorable factor, since it increases the unbalance force which is trans- 
mitted to the aircraft structure, as well as the stress in the shaft. 

It follows from Eqs. (51) and (54), as well as 'from graphs of Figs. 
10 and 11 that the use of a hydraulic damper reduces the unbalance force 
and stresses in the shaft, both because it increases the compliance 6, 
and because it affords the possibility of shifting the critical speed 
past the limits of the operating rpm. 

Dividing Eq. (22) by E q .  (11) and using Eq. (14a) , we get an expres- 
sion for angle c1 (see Fig. 1) 

or 

Equation ( 5 9 )  can also be written as 

It follows that angle c1 varies from 0 to 7~ when w goes from 0 to m. 

the critical angular speed (w = w*), ct = ~ / 2 .  For a system without 
At 



damping (g = 0 )  a. = 0; t h e  vec to r  of t h e  per turbing fo rce  has  t h e  same 
d i r e c t i o n  a s  t h e  displacement ( see  FLg. 1). Figure 1 2  p re sen t s  graphs 
of a. = a(;) f o r  d i f f e r e n t  va lues  of a t  6 = 0.23. 

The following are t h e  dec i s ive  f a c t o r s  which need t o  be considered 
i n  es t imat ing  t h e  danger t o  a tu rb ine  operat ing a t  o r  near  c r i t i c a l  rpm: 
s h a f t  de f l ec t ion ,  stresses i n  t h e  s h a f t ,  and t h e  magnitude of t h e  unbal- 
ance force .  I n  each s p e c i f i c  case,  one o r  another of t hese  f a c t o r s  can 
dominate. L e t  us  consider  them i n  d e t a i l .  

The maximum permiss ib le  s h a f t  d e f l e c t i o n  should be less than t h e  
opera t ing  c learance  between t h e  r o t o r  and t h e  housing ( i n  order  t o  e l i m -  
i n a t e  t h e  p o s s i b i l i t y  of bumping and breaking of b lades ,  l a b y r i n t h  seals, 
etc.). The p o s s i b i l i t y  of f a i l u r e  i n  t h i s  case can be el iminated by in-  
c reas ing  t h e  r a d i a l  c learance .  However, t h i s  s t e p ,  as is  w e l l  known, 
would reduce t h e  tu rb ine  e f f i c i ency .  The t o l e r a b l e  inc rease  i n  t h e  s h a f t  
d e f l e c t i o n  a v a i l a b l e  i n  t h i s  case i s  l imi t ed  by t h e  s t r eng th  of t h e  s h a f t ,  
and i s  governed by t h e  f l e x u r a l  stress produced when opera t ing  a t  c r i t i c a l  
rpm. This stress, combined wi th  o ther  stresses i n  t h e  s h a f t ,  can exceed 
t h e  y i e l d  s t r e n g t h  and even t h e  u l t ima te  s t r eng th  of t h e  material, which 
would r e s u l t  i n  a r e s i d u a l  s t r a i n  of t h e  s h a f t  and t o  f a i l u r e  of t h e  en- 
t i r e  s t r u c t u r e .  

Great d i f f i c u l t i e s  i n  a i r c r a f t  and automotive gas tu rb ine  power 
p l a n t s  a r e  f r equen t ly  brought about by excessive v i b r a t i o n s  of t h e  s t ruc -  
t u r a l  elements of t hese  veh ic l e s ,  which are due t o  unbalance f o r c e s  o r  
moments i n  t h e  engine.  Excessive v i b r a t i o n s  can r e s u l t  i n  f a t i g u e  f a i l -  
u r e  of a i r c r a f t  p a r t s ,  as w e l l  as cause premature t i r e d n e s s  of t h e  crew 
and d i s t u r b  t h e  opera t ion  of a i r c r a f t  instruments .  

The r e l i a b i l i t y  of a i r c r a f t  and automotive gas tu rb ine  power p l a n t s  
i s  frequent1.y r a t e d  i n  t e r m s  of t h e  so-cal led v i b r a t i o n  overload f a c t o r ,  
which i s  t h e  r a t i o  of t h e  maximum acce le ra t ion  of a s p e c i f i c  po in t  of t h e  
engine housing ( i n  case  of v i b r a t i o n s )  t o  t h e  acce le ra t ion  of g rav i ty .  
Some va lues  of t h e  permiss ib le  v i b r a t i o n  overload f o r  va r ious  gas  tu rb ine  
engines a r e  presen.ted i n  [ 2 ]  

The v i b r a t i o n  overload f a c t o r ,  as w e l l  a s  t h e  load on t h e  bear ings 
inc reases  with t h e  unbalance fo rce .  The v i b r a t i o n  overload of an oper- 
a t i n g  engine i s  determined by means of s p e c i a l  instruments  [ l ] .  

A s  fo l lows  from Eqs. ( 2 4 1 ,  (51) and ( 5 4 ) ,  all. t h e  f a c t o r s  which de- 
termine t h e  r e l i a b i l i t y  of a turboriachine a r e  propor t iona l  t o  t h e  eccen- 
t r i c i t y  of t h e  wheel. I n  a broader sense of t h e  word, t h e  t e r m  eccen- 
t r i c i t y  should be  understood t o  denote not  only a displacement of t h e  
cen te r  of mass 'of t h e  wheel t o  correspond with t h e  imbalance no t  e l L m i -  
nated by dynamic balancing of t h e  r o t o r ,  but  a l s o  t h e  inc rease  i n  eccen- 
t r i c i t y  brought about by des ign  and production f a c t o r s .  

Depending on t h e  p rec i s ion  wi th  which t h e  wheel, t h e  s h a f t ,  t h e  
bear ings ,  t h e  housing, e tc . ,  have been manufactured and i n s t a l l e d ,  as 
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Figure 12. 
as a Factor 

Phase Shift between the Force and Displacement 
of the Frequency and of the Magnitude of Damp- 

ing Resistance. 

as well as depending on the size of clearances in the bearings, the ec- 
centricity may vary over a wide range; i.e., from several thousandths to 
tenths of a millimeter and even to 1 millimeter (as, for example, in units 
for tensile testing of disks [ 6 ] ) .  
also increase appreciably with time during operation due to, for example, 
nonuniform creep of gas turbine wheels and blades and, in particular, on 
partial or complete rupture of blades. 
eccentricity can be estimated only approximately. 

The eccentricity in some cases can 

It follows from the above that the 

It also follows from the above that the vibrational stability of 
turbomachines depends to a large extent on the quality of manufacture and 
that in some, but by far not all, cases tightening the production speci- 
fications and assembly precision can eliminate the above defects. 

In those cases when the critical speed is in the range of operating 
rpm and when the system itself does not provide sufficient damping to 
eliminate dangerous deflections of the shaft, the vibration of the power 
plant and the possibility of engine failure, it must be equipped with a 
damper. 
eliminates danger at critical rpm. 
critical speed beyond the operating range, as well as by reducing the de- 
flections, stresses, and the unbalance force to safe limits. 

A s  was shown by our analysis, the use of a hydraulic damper 
This can be achieved by shifting the 
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A s  was pointed out above, shifting the critical speed-and reduction 
of the deflections dgends to a great extent on parameter 6 and the more 
s o ,  the smaller the 6 (see Fig. 6 ) .  In automotive and aircraft engines, 
however, if 6 is small; i.e., the system has large compliance. There is 
the danger that the rotor will rub against the stator. This happens in 
aircraft engines at overloads which arise during acrobatics or on landing, 
and in automotive engines when riding on bumpy roads. 

The excessive deflections of hydraulic dampers o f  a shaft and bump- 
ing of the rotor against the housing, which are possible under those cir- 
cumstances, can be eliminated by installing rigid supports which limit 
the rotor displacement. The presence of friction in this case will have 
a favorable effect, softening the bumping into the limiters and aiding in 
rapid damping of the free vibrations. In this case, the damping character- 
istic of the system will not be linear. At some deflections the elastic 
element of the damper will be compressed up to the stops. Then the sti.ff- 
ness of the system will increase and will be equal to the stiffness of a 
shaft supported by uncompliant supports; the natural frequency co the 
system increases, the resonance conditions change; the resonance deflec- 
tion of the shaft will be smaller than in the case of a system with 
linear characteristic. A detailed study of the operation of nonlinear 
dampers is presented in [l]. 

A s  follows from Eqs. (7 )  and (8) and from the graph of Fig. 3 ,  6 de- 
pends on the geometric and damping properties of the system, which are 
governed by Ll, L2, 6 '  and 602. The first three of these quantities are 
selected from strength and design considerations. For example, in gas 
turbine engines dimension 1 is determined by the type and length of the 

combustion chamber and of the compressor, the location of supports, etc. 
Dimension 1 is determined by the thickness of the wheel, the manner in 

which it is seated on the shaft, type of bearing, gas and oil lubricated 
seals, etc-. From strength considerations it is desirable that dimension 
1 be as small as possible. Changing of shaft diameters and lengths in- -2 
volves quite complicated and expensive modifications, which may increase 
its weight. 
obtain the required by providing the necessary mount compliance 6 

The latter quantity can be easily changed by introducing an elasticele- 
ment into the mount, and can be accomplished without extensive redesign- 
ing. 

-1 

-2 

All this requires that one forego varying L1, L2 and 6 ' ,  and 

02'  

It should be noted that for systems with many wheels, unlike the 
system with one degree of freedom which was considered here, the compli- 
ance of the hydraulic damping mount should be selected so that not only 
the first, but also the second, third, etc., critical speeds be suffi- 
ciently removed from the operating rpm range [8]. However, this cannot 
always be achieved. Then dangerous shaft deflections under critical 
speed conditions can be eliminated by appropriate selection of the damp- 
ing resistance factor, the magnitude of which should be established 
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separately for each case. 

In those cases when the critical speed is in the range of operating 
rpm and the predominant factor in safe operation of the given machine is 
minimum shaft deflection, it ig necessary to select an optimum damping 
resistance factor ( e  = 5 and a = 1. However, these conditions fre- 0 quently cannot be maintained since the viscosity of the oil drops sharply 
as the temperature increases [6]. 

The most suitable damping substances are silicone fluids, the vis- 
cosity of which varies little with temperature. However, these fluids 
are not too suitable as lubricants, which makes it necessary to maintain 
two separate systems, one for bearing lubrication and the other for sup- 
plying the damper. 
employs the simplest solution whereby damping is produced by the same oil 
as that used for bearing lubrication. In this case, however, the damping 
resistance factor can change appreciably due to change in viscosity as 
the oil heats up during operation. Turning to curves of Fig. 7, we note 
that this shortcoming can be appreciably alleviated by proper selection 
of - a, the re1ativ.e damping factor. 

This complicates the design, so that usually one 

In fact, if we select a value of a = a slightly larger than unity 
at conditions corresponding to the minimum oil temperature possible with 
a given machine, then on subsequent heating of the oil and reduction in 
the damping resistance; i.e., on moving to the left of the selected point 
- a, the dpamic intensification factor Fill change, first decreasing to 
A = 1 at a = 1 and then increasing at g < 1. By proper selection of a 

> 1, it is possible to obtain a situation whereby the change in the inten- 
sification factor, accompanying the heating of the oil will be minimum. 

-2 

-2 - 

We shall clarify this by means of the following example. Examining 
the curve for s = 0.3 (Fig. 7), we note that when, for example, the damp- 
ing resistance factor is reduced by a factor of four as the oil heats up, 
one can use the following values of a h 
corresponding to them. 

and obtain values of a and A1 -2 2 -1 

Parameters 

. .  

Vel 

I 
. .  

1 
1 
0.25 
2.65 

It follows from this table that if one chooses a = 1, then, as the -2 
oil is heated up, the dynamic intensification factor increases by a factor 
of 2.65 (version 1) and, if, for example a = 2, then the load factor , -2 
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changes t o  a much lesser degree wi th  changes i n  temperature (vers ion  2 ) .  
Obviously, t h e  second ve r s ion  i s  more favorable  from t h e  po in t  of v i e w  
of minimizing de f l ec t ion .  However, t h i s  H w i P l  no t  g ive  t h e  minimum un- 
balance fo rce  stresses i n  t h e  s h a f t  ( see  Figs .  10  and 11 a t  73 > G 

I n  f a c t ,  from t h e  po in t  of view of obta in ing  minimum values  of and 0 ,  

one should s top  a t  2 < 1. 

1 2 )  a 

W e  have-previous ly  considered a case i n  which t h e  c r i t i c a l  speed i s  
i n  t h e  opera t ing  range. When, by proper s e l e c t i o n  of t h e  mount compli- 
ance it  i s  poss ib l e  t o  s h i f t  t h e  c r i t i c a l  speed beyond opera t lng  range, 
s o  t h a t  umin > n12 (see  F igs .  10 and ll), - Z should be smaller than 1 from 

t h e  following cons idera t ions .  A s  w a s  pointed out  above, t h e  unbalance 
f o r c e  of t h e  engine i s  f r equen t ly  a source of undes i rab le  v i b r a t i o n s  of 
t h e  s t r u c t u r a l  elements of t h e  a i r c r a f t .  I n  order  t o  reduce t h i s  f o r c e ,  
i t  i s  advantageous t o  use 5 less than un i ty .  
graphs of Fig.  10 i t  i s  easy t o  see t h a t  over wide range of f requencies  
( a t  W > W t h e  unbalance f o r c e  a t  = 0.1-0.3 i s  approximately 2.5-3 

t i m e s  smaller than a t  E = 1. Thus, s e l e c t i n g  a va lue  of a ranging from 
0 .1  t o  0.3, i n s t ead  of = 1, one can appreciably reduce t h e  a i r c r a f t  
v i b r a t i o n s .  

Indeed, t u rn ing  t o  t h e  

12)  

- 
- a can be  se l ec t ed  more r igo rous ly  when one knows t h e  v i b r a t i o n a l  charac- 
t e r i s t i c s  of t h e  a i r c r a f t  i n  which t h e  engine o r  t u rb ine  i s  t o  be 
i n s t a l l e d .  

I n  t h i s  case above w e  have given approximate va lues  of a. Note t h a t  

In  choosing 5 < 1, one must keep i n  mind t h a t  t h i s  w i l l  i nc rease  t h e  
d e f l e c t i o n ,  t h e  unbalance fo rce ,  and t h e  stresses a t  t h e  c r i t i c a l  rpm when 
w i s  near  u n i t y  ( see  F igs .  8 ,  10  and 11 ) ;  however, i n  one case t h e  c r i t i c a l  
rpm i s  below t h e  lowest opera t ing  rpm. When t h e  s h a f t  speed inc reases  
and passes  r a p i d l y  through t h e  c r i t i c a l  one (7;s # cons t )  t h e  d e f l e c t i o n ,  
t h e  unbalance f o r c e  and stresses i n  t h e  s h a f t  w i l l  be apprec iab ly  smaller 
than  those obtained by u s  i n  consider ing s teady-s ta te  opera t ing  condi- 
t i o n s  (G = cons t ) ,  [ 4 ] .  For t h i s  reason, as w e l l  a s  due t o  t h e  sho r t  
t i m e  of passage through t h e  c r i t i c a l  speed, t h e  s l i g h t  i nc rease  i n  def lec-  
t i o n ,  stresses, and unbalance f o r c e  above those obtained a t  E = 1 w i l l  
no t  harm t h e  u n i t .  

- 

I n  order  t o  i l l u s t r a t e  t h e  above, w e  now present  a numerical example. 

Example 

1. E s t i m a t e  t h e  r e l i a b i l i t y ,  under v i b r a t i o n a l  condi t ions ,  of a 
gas  tu rb ine  engine,  t h e  des ign  of which i s  shown i n  Fig.  1, and which i s  
descr ibed by t h e  fol lowing da ta :  
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m = 30.6 kg, 1,  = 24.5 cm, 1, = 9 cm, D = 5.5 cm, 
d z 2 . 5  cm, E=2.105 N.106/m2; 1=43 cm4; 
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- 
W = 15.7crd. 2,=57.1.10-Qm/n; a2= 1.83.10-9 m/n. 

-1 The operating rpm range is w 

the eccentricity = 0.001 cm. 

= 1250 sec-' and w = 2500 sec , and min max 

/ 4 7  2. Select the parameters of a hydraulic mount which would provide - for safe and reliable operation of this system. 

The compliance of the shaft on perfectly rigid supports is, from 
Eq. ( 7 )  

The critical speed on perfectly rigid supports is, from Eq. ( 9 )  

We shall assume that in our case the rotor is mounted on rolling-contact 
bearings; then at w = w '  the dynamic intensification factor with the 

engine operating at the critical speed lies between 30 and 100 [ 6 ] .  
Then from Eqs. ( 2 3 ) ,  ( 3 1 ) ,  ( 5 2 ) ,  ( 5 4 )  and ( 5 7 )  we find that 

1' 

-A*=,0.3--1.0 mm. 

603 N. IO6/,'. I 
The results show that the deflections of the shaft, the load on the 
bearing, the unbalance force and the stresses in the shaft at a critical 
speed lying in the operating range will be high. Operation of the engine 
under these conditions can produce dangerous vibrations in the turbine 
and in the aircraft, or bumping of the rotor against the housing, with 
subsequent failure of the power plant. 

To reduce deflection, unbalance force and stress and to provide for 
safe and smooth power plant operation, it is necessary to provide the 
engine with a hydraulic damping mount. 

We select the mount compliance at point 2 

According to Eq. ( 7 ) ,  this value corresponds to 

6=41.33. 10-9m/n;-6=0.23 and 01=889 sec'l. 

The optimum a - [Eq. (36)] and damping resistance factor [Eq. (38)] -1 - %I 
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are 

ao=1.63 and 50=1079 N/cm'' sec. 

Figures  8 and 9 show va lues  of X* and X* as func t ions  of t h e  r e l a t i v e  

angular  v e l o c i t y  w. Mult iplying t h e  o rd ina te s  of t hese  curves by t h e  
e c c e n t r i c i t y  2 = 0.001 mm, w e  determine t h e  d e f l e c t i o n  of t h e  s h a f t  a t  
p o i n t s  2 and 3 ( see  Fig.  1). 

2 

Figures  10 gnd 11 show graphs of 
va lues  of g and (5 are then  determined from 

and 0 as func t ions  of w. The 

The opera t ing  range of angular  v e l o c i t i e s  l i e s  between 

(62) 
- wmln= - 1.4 and comax=2.8. 

It can be  noted from Figs .  8, 10 and 11 t h a t  employment o f  hydraul ic  
damping mount s h i f t s  t h e  c r i t i c a l  speed beyond t h e  opera t ing  range. 
Passing t h e  c r i t i ca l  speed a t  W c l o s e  t o  u n i t y  i s  accompanied by increas-  
ing  A*, and 0. Se lec t ing  - =  0.5 from Figs .  8,  10  and 11, and using 
E q s .  (61) w e  f i nd ,  a t  75 = 1 . 2  

.-I * =0.@187 mm; R =m N; 0=3 N* 106/m2. (63 )  

These q u a n t i t i e s  a r e  many t i m e s  smaller than those  given by E q .  (60) f o r  
a system without hydraul ic  damping. 

I f  we assume t h a t  t h e  v i s c o s i t y  drop accompanying t h e  temperature 
rise produces a f i v e f o l d  reduct ion  i n  t h e  damping r e s i s t a n c e  f a c t o r ,  then 
( a t  = O.l), t h e  magnitudes of &*, and o f o r  W = 1 w i l l  be  

.-18=0.0795mm,R=2680 Nand(T=ll . l  N-10 6 2  / m  (64 1 

These q u a n t i t i e s  are somewhat higher  than those  obtained from Eq. (63),  
but s t i l l  apprec iab ly  lower than those  given by Eq. (60).  Here i t  should 
be  remembered t h a t  i n  a system lacking a damper, t h e  d e f l e c t i o n ,  t h e  un- 
balance f o r c e  and t h e  stress, m a y  become q u i t e  high [Eq.  ( 6 0 ) ]  i n  t h e  op- 
e r a t i n g  rpm range on extended opera t ion  with relative angular speed 8' = 

1 
2.08, while  t h e  va lues  of A*, and (5 a t  w = 1 w i l l  a c t u a l l y  be appreci-  
ab ly  lower than those  ca l cu la t ed  from Eq. 
age through t h e  c r i t i c a l  rpm when picking up speed. It is  no t  d i f f i c u l t  
t o  n o t i c e  t h a t ,  upon s e l e c t i n g  an = 1 it  would have been poss ib l e  t o  
reduce t o  an  even g r e a t e r  e x t e n t  t h e  level of A*, and (5 when passing 
through t h e  c r i t i ca l  speed. However, t h i s  i s  no t  necessary.  

(64) as a r e s u l t  of rap id  pass- 
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I n  add i t ion ,  i n  examining t h e  opera t ion  of t h e  damping mount i n  the  /48 
range of opera t ing  rpm [Eq. (62) ] ,  i t  i s  no t  d i f f i c u l t  t o  n o t i c e  (see 
F igs .  8, 10  and 11) t h a t  t h e  va lues  of - A*, R and 5 i n  t h i s  reg ion  a t  5 
< 1 are apprec iab ly  lower than  a t  2 = 1. 
f o r  

FLr example, i f  B = 2.08, then 

- 
~=0.1,* '  .4*=0.013 mm, R=460 N anda=1 .8  N01O6/m2, 

II = 1.0, R = 1530N ando = 5.1 N.106/m2. A* = 0.0165 mm, 

A s  t hese  numbers show, t h e  l e v e l s  of A*, R and 5 a t  5 = 0.1 and a t  
are not  too  high compared with t h e  v a l u e s g i v e n  by Eq .  (60) , and t h a t  
t h e  opera t ion  of t h e  engine a t  these  va lues  of d e f l e c t i o n ,  unbalance 
f o r c e  and stress i s  s a f e .  But i n  consider ing s e p a r a t e l y  t h e  e f f e c t  of 
t h e  unbalance f o r c e  and remembering t h a t  i t  f r equen t ly  causes  dangerous 
v i b r a t i o n s ,  cons idera t ion .should  be given t o  a poss ib l e  reduct ion  i n  B 
i n  order  t o  reduce t h e  v i b r a t i o n  of t h e  s t r u c t u r a l  elements and t o  i m z  
prove t h e  v i b r a t i o n a l  damping of t h e  engine.  For example, i f  3 = 0.1, 
t h e  umbalance f o r c e  (and consequently a l s o  t h e  v i b r a t i o n  of t h e  s t ruc -  
t u r a l  elements) w i l l  be  approximately t h r e e  t i m e s  smaller than f o r  2 = 1 
(by a f a c t o r  of 3.3 when W =  2.08) over much of t h e  opera t ing  range. 

= 1 

The s tudy presented above and t h e  c i t e d  example show t h a t  s a f e  and 
r e l i a b l e  power p l a n t  opera t ion  can be achieved by using a hydraul ic  damp- 
ing  mount. This can be achieved by s h i f t i n g  t h e  c r i t i c a l  speeds beyond 
opera t ing  range, as w e l l  a s  by reducing t h e  d e f l e c t i o n ,  unbalance fo rce  
and stresses i n  t h e  s h a f t  t o  s a f e  levels when t h e  c r i t i c a l  speeds l i e  i n  
t h e  range of opera t ing  rpm. 
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DYNAMIC COMPLIANCES IN A SYSTEM WITH FRICTION 

Engineer V. M. Balepin 

Dynamic stiffness (or compliance) methods are extens2vely used in 
the study of vibrations, as well as in practical calculations. 

Recently, extensive work was done on the effect of various types of 
friction on vibration. In this connection we would like to discuss the 
problem of the dynamic compliance of a system in which friction accom- 
panies the flexural vibrations. F. M. Dimentberg [l, 21 has discussed a 
similar problem in its application to catenary systems. 

The problem is formulated as follows. Determine the dynamic com- 
pliance of a system with two degrees of freedom undergoing flexural vibra- 
tions, assuming presence of internal friction forces. We shall consider 
a nonrotating beam (Fig. 1) of constant cross section with a moment of 
inertia J .  
masses m and m 

The beam is hinged at the ends and carries two weights with 

-1 -2. 

First we make some simplifying assumptions: 

1. 

2 .  
3 .  The moments due to rotation of the weights are small and may be 

4 .  The frictional forces induced in the beam by these moments are 

5. The mass of the beam is neglected. 

The internal friction forces are assumed applied over the design 

There is no friction in the supporting hinges. 
cross sections (at points of action of the masses). 

neglected. 

also neglected. 

A perturbing force is applied over the design section 1; it is 
defined as 

where P is the real amplitude of the 
-0 

force; c i s  the natural base of loga- 
rithms; w = w + L a  is the complex fre- 
quency; w is the natural frequency of 
the beam; a is the damping factor. 

k+--YKJk pr P t  

Figure 1. Computational Sche- kV-1 .  
matic of a Shaft with Two 
Masses Acting between Supports. It is assumed that the internal 

friction force is proportional to the 
complex displacement [ 31 ; i. e. , 
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Here C is a force producing a unit displacement at point of application 

G; %-is the complex displacement of section 2; y is an internal friction 
-2 

coefficient, which is assumed to be constant 

The equations of masses m and m will be -1 -2 

where 6 

applied in the jth section 

is the displacement of the nth section produced by a unit force 
J!i 

- 

In the first equation of system (31,  the first two terms of the 
right-hand side define displacements of section 1, produced by inertia 
forces of masses m and m 
ments due to internal friction forces, and the last term defines the dis- 
placement due to the perturbing force. 
the 2nd equation define the same quantities as in the lst, except that 
theseare applicable to section 2. 

while the two following terms are displace- 

Terms in the right-hand side of 

-1 -2’ 

The stiffness factors are expressed in terms of action coefficients 

It should be noted that: 

1) taking into account the moment due to rotation of the masses 
will add two more equations to the system of equations ( 3 ) .  
tions would define the angles of rotation of the design sections. In 
addition, terms which take into account the displacements produced by 
these moments and by friction forces due to these moments would also be 
added. 

These equa- 

2) inclusion of one external resistance force in the system would 
result in adding one term to Eqs. ( 3 ) ;  

3) the method about to be presented makes it possible to set up 
equations for displacements [motion] of a system with any number of 
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degrees of freedom, as well as any perturbations and frictional forces. 

Since we are considering induced vibrations of the shaft, it is 
sufficient to discuss only the particular solutions of inhomogeneous 
equations (3)  

- - 
yl= yloefof; y2=y,,,eim*. 

Substituting corresponding values of displacements and 
atives into E q s .  ( 3 )  and transforming, we get 

- 
(+lvz$-l - is l lCl ,v l  - i ~ ~ ~ ~ ~ ~ v ~ )  ylo+ (z12'lt2w2- 

(sz1'ltlw2- i ~ 2 1 C l , v ,  - i ~ ~ ~ ~ ~ ~ v ~ )  ylo+ (~,m,J2- 1 - 
- i ~ , , C , , v ,  - iS12C22v2) ym= - W 0 ;  

L 

- i~21C12wl - i2,,C,,v2) yzO= - 621Pw 

The expressions for dynamic compliances will be 

where 

(5) - 152  

their deriv- 

We now separate the real from the imaginary parts in expressions (7). 
Thus we substitute into determinants (8), (9) and (10) the expression 

- I 5 3  

- 
w = w + i u .  

Without presenting the derivation, we write the final result 

- - 
e l l=  M + i N ;  e21 = M, + i N , ;  

A C + B Y .  
C 2 + K 2  ' 

B C -  AK . 
C2+@ ' 

M= 

N =  



where 

Formulas (11) were used for calculating the dynamic compliances of a 

3 
= l , = I =  beam with the following parameters: total length 1 = 60 cm, 1 

= 20 cm are the lengths of the individual sections; 2 = 0.97 cm is the 
moment of inertia of the beam cross section; m = m = 3.5 kg (3.57.10- 

kg-cm -sec ) are the masses of the weights placed on the beam; v = 

0.0319, x2 = 0.041 and a = 0.905. 

- Figures - 2 and 3 depict the variation in complex dynamic compliances 
gll and gZl as a function of the frequency. 
on the vertical axis, with the imaginary component on the abscissa. The 
frequency axis is drawn perpendicular to the real and imaginary axes. 
The vector of the complex dynamic complis?nce is drawn for each design fre- 
quency and a line (hodograph) is drawn through the ends of the vectors; 
it shows the manner in which the compliance varies in a system with two 
degrees of freedom and with friction. In view of the fact that friction 
was assumed t o  be prsortional to the complex displacement, the dynamic 
compliances e and e will not be equal to the static compliance when 
f +. 0. 

3 
-1 -2 -1 2 

-1 

The real component is plotted 

-11 -2 1 
- 

Note the most characteristic points on the graphs. The point of in- 
tersection of the complex dynamic compliance curve with the horizontal 
plane corresponds, in an ideal elastic system, to the resonance frequency. 

The real component is = 0 and the imaginary component is = max, 
which proves the absence of displacement in the direction of the perturb- 
ing force. 
into the 2nd quadrant (it is shown in the figures by a dashed line). The 
curve goes from the 2@ back into the 1st quadrant in Fig. 2 when the 1st 
shape of the elastic curve of the beam changes to the 2@. Also in the- 
region of the 2& resonance (the expression "resonance" is used 

The phase angle is r / 2 .  After this point the curve passes 
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Figure 2. Graph of the 
Principal Complex Dy- 
namic Compliance. 

Figure 3. Graph of Auxil- 
iary Complex Dynamic 

Compliance. 

a r b i t r a r i l y ) ,  t h i s  behavior of t h e  curve i s  repeated.  
crease i n  t h e  frequency, t h e  complex dynamic compliance decreases  a l l  t hz  
t i m e  and t h e  curve approaches t h e  frequency a x i s .  

On f u r t h e r  in- 

- 
The d i f f e rence  between curve e = e ( f )  and t h a t  descr ibed above -21 -21 - 

s t a r t s  i n  t h e  reg ion  of t h e  2 g  resonance, when i t  passes  t o  t h e  3 e  and 
4* quadrants.  
t h e  e las t ic  curve of t h e  beam. 

This  passage i s  a l s o  r e l a t e d  t o  changes i n  t h e  shape of 

The above equat ions obtained ( r e s t r i c t e d  by t h e  above descr ibed con- 
s ide ra t ions )  make i t  poss ib l e  t o  determine t h e  dynamic compliance i n  
systems wi th  s e v e r a l  degrees of freedom a t  d i f f e r e n t  types  of f r i c t i o n .  
By i t s  form t h e  so lu t ion  of t hese  problems d i f f e r s  l i t t l e  from t h a t  f o r  
ordinary problems, except t h a t  t h e  dynamic compliance t u r n s  out  t o  be a 
complex quan t i ty .  
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FORCED VIBRATIONS OF A FREE SHAFT WITH F R I C T I O N  

Engineer Ye.A. Artemov 

The t e r m  f r e e  s h a f t  i s  used he re  t o  denote a r o t a t i n g  beam i n  which 156 - 
t h e  e f f e c t  of t h e  support  on t h e  manner i n  which t h e  s h a f t  v i b r a t e s  i s  
neglected.  It i s  assumed t h a t  t h e  beam i s  coupled t o  i t s  supports  only by 
means of v i b r a t i o n  dampers (Fig.  1). An example of such a f r e e  s h a f t  i s  
a r o t o r  wi th  s l iding-contact  bear ings mounted at p o i n t s  of o s c i l l a t i o n .  
Such a s h a f t  e x h i b i t s  a vary ing  degree of necessary, e x t e r n a l  concentrated 
damping, which depends on t h e  k ind  of f l u i d  used, as w e l l  as t h e  dimen- 
s i o n s  of t h e  working su r faces  of t h e  s h a f t  and of t h e  bear ings.  

Y t  , mt -?df ,m,JdJ 

Figure 1. Schematic of a Shaft  with Three Disks 
Coupled t o  Supports by Means of Vibra t ion  Dampers. 

The forced v i b r a t i o n s  of a f r e e  s h a f t  must be c a l c u l a t e d  i n  determin- 
ing t h e  resonance condi t ions i n  engines with dampers us ing  t h e  dynamic 
compliance method. This paper p re sen t s  an attempt t o  c a l c u l a t e  t h e  ampli- 
t udes  of forced f l e x u r a l  v i b r a t i o n s  of a f r e e ,  r o t a t i n g  s h a f t  of any shape, 
sub jec t ed  t o  an a r b i t r a r y  l o a d ,  and equipped wi th  e damping mounts. It i s  
assumed t h a t  t h e  s h a f t  deforms l i n e a r l y  and t h a t  The damping mounts a r e  
hydraul ic  ( i n  such mounts t h e  f r i c t i o n  fo rce  i s  assumed p ropor t iona l  t o  t h e  
frequency of v i b r a t i o n s ) .  
f o r c e s  i n  t h e  s h a f t  a r e  so s m a l l  t h a t  they may be neglected.  

The d i s t r i b u t e d  bending moments due t o  i n e r t i a  

W e  s h a l l  solve t h i s  problem by using i n t e g r a l  equations of forced 
f l e x u r a l  v i b r a t i o n s ,  which t a k e  i n t o  account viscous f r i c t i o n  and a r e  pre- 
sented i n  [ 4 ]  : 
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where EJ i s  t h e  r i g i d i t y  of t h e  s h a f t  c ros s  s e c t i o n  ( i n  N-mp) , x and a r e  
t h e  s h a f t  d e f l e c t i o n s  i n  an a r b i t r a r y  c ros s  s e c t i o n  along t h e s e  axes ( i n  m ) ;  
w i s  t h e  angular frequency of v i b r a t i o n s  ( i n  s e c - l ) ;  p F i s  t h e  r o t a t i n g  

pe r  u n i t  l eng th  ( i n  kg/m); a r e  t h e  masses of t h e  d i sks  a t  ind iv idua l  

s e c t i o n s  ( i n  kg); .  JZi a r e  t h e  reduced diameter moments of i n e r t i a  of t h e  

2 d i sks  ( I n  kg-m ) ;  9 i s  t h e  e x t e r n a l  d i s t r i b u t e d  load per  u n i t  l e n g t h  ( i n  
N / m ) ;  i s  a u n i t  funct ion 

m- - 

i 

- 

- 
0; z<z,,; I 1; >z,,; 

'ki = 

here subsc r ip t  & of E t a k e s  on values  E, 2, J and ct for terms with mass 
E,  fo rce  E, moment of i n e r t i a  J and f r i c t i o n  c o e f f i c i e n t  ct r e s p e c t i v e l y ;  
M i  i s  t h e  viscous f r i c t i o n  c o e f f i c i e n t  i n  s e c t i o n  z ., and g i s  an inde- 
pzndent v a r i a b l e  of i n t e g r a t i o n .  

lowing boundary condi t ions : 

-TIL 
For a f r e e  s h a f t ,  t h e  system of equat ions (1) should s a t i s f y  t h e  f o l -  

I € J Y  = 0: (EJX")' = 0; 
€Jy" = 0; (EJ y")' = 0; 

EJx" =-o; (EJX'I)' = 0;  
EJy" =o; (EJy")' =o. 

Z=O 

z=l 

I n t e g r a t i n g  Eqs .  (1) along t h e  s h a f t  and s u b s t i t u t i n g  
d i t i o n s  ( 2 ) ,  we ge t  
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The above system of equat icns  desc r ibes  by means of u n i t  funct ion E 

a n a l y t i c  expression f o r  t h e  shear ing fo rce  i n  any s e c t i o n  of t h e  s h a f t .  
When I- = 0 ,  CGnStmtS C and C a r e  a l s o  zero.  

t h e  
k i  - 

-1x - -%L 
I n t e g r a t i n g  E q s .  ( 3 )  once more, we get  

S u b s t i t u t i n g  t h e  condj.t,ions of t h e  u n i t  fur?cti.on f o r  z = 0 i n t o  E q s .  (4), 
we f i n d  t h a t  C = (1 = 0 .  

-2z -2z 

'For convenience i n  subsequent manipulations,  we r ep resen t  E q s .  ( 4 )  as 

where MI' and E'' 

seccnd equations of system (4), divided by E J ,  i . e . ,  

a r e  t h e  expressions i n  t h e  f igu red  braces  of t h e  f irst  and 
-25 JL 

Z I  
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I n t e g r a t i n g  
t i o n s  f o r  forced 

Eqs. ( 5 )  twice more, we ob ta in  t h e  s t a r t i n g  i n t e g r a l  equa- 
v i b r a t i o n s  of a f r e e  s h a f t  wi th  viscous f r i c t i o n ,  subjected 

t o  e x t e r n a l  p e r i o d i c  f o r c e s  : 
i - 

and 

The unknown constants  of i n t e g r a t i o n  ~ ' ( o ) ,  ~ ( 0 ) ~  ; r ' ( O )  a.nd ~ ( 0 )  w i l l  be 
found from t h e  equa,tions of' r e c i p r c c i t y  of v c r k ,  rV"r?fch wl1i be deri.ved. 
for  c u r  problem. 

We s h a l l  s e t  up t h e  r e c i p r o c i t y  equation f o r  l oads  a r i s i n g  on f r e e  
v i b r a t i o n s  stnd for e x t e r n a l  l o a d s ,  assuming t h a t  t h e  viscous f r i c t i o n  f c r c e  
acconipanying t h e  r o t a t i o n  of t h e  system i s  an e x t e r n a l  f o r c e  from t h e  point  
of view of t h e  dynamic equi l ibr ium. T t  i s  obv5ocs t h a t  i n  E probiem in- 
corporat ing f r i c t i c n ,  t h e  eqmt, ion of r e c i p r o c i t y  of work w i l l  reduce t o  two 
equations of xork i n  t h e  11 and planes [l, 41. 

The loads ?In f r e e  v i b r & t i o n  a r e :  

Loads ir f m c e d  v i b r a t i o n s  a r e :  

. __.. _...... .. . ._ ... 



I 

The equations of r e c i p r o c i t y  of work f o r  i n t r i n s i c  loads P a n d &  and 
c - -C - 

f o r  t h e i r  corresponding i n t r i n s i c  d e f l e c t i o n s  x and and. angles  of 

ro ta t , lon  x' 2nd Gk, as w e l l  as f o r  e x t e r n a l  loads g y n a  End t h e i r  

corresponding d e f l e c t i o n s  x and x and angles of r o t a t i o n  11' and x' i n  
forced v i b r a t i o n s  wi th  f r i c t i o n  w i l l  be,  on t h e  b a s i s  of t h e  theorem of 
r e c i p r o c i t y  of work ( t h e  de r iva t ion  of equations f o r  systems without f r i c -  
t i o n  i s  considered i n  d e t a i l  i n  [ 2 ] ) :  

-!& ck 

c k  - - 

where &-=  0 ,  1, 2 ,  ... i s  t h e  o r d i n a l  number of t h e  mode and frequency of 
n a t u r a l  v i b r a t i o n s .  

a converging process on simple i t e r a t i o n  even i n  -the case of w < w 

This i s  due t o  t h e  f a c t  t h a t  t h e  f i r s t  e l a s t i c  mode of t h e  system i s  pre- 
ceded by zero modes, which f i r s t  must be removed, i . e . ,  it i s  necessary 
t o  f i n d  those  o r thogona l i ty  cond i t ions  which would e l imina te  t h e  e f f e c t  of 
t h e  zero-mode components. 

A f r e e  s h a f t  has fou r  zero modes of v i b r a t i o n ,  corresponding t o  i t s  
fou r  degrees of freedom as a r i g i d ,  i n e l a s t i c  body, namely: displacement 
i n  space r e l a t i v e  t o  i t se l f  i n  t h e  & a n d  x d i r e c t i o n s  and r o t a t i o n  i n  space 
about t h e  cen te r  of t h e  m a s s  about d i r e c t i o n s  p a r a l l e l  t o  t h e s e  axes.  
Ana ly t i ca l ly ,  t h e  zero modes of v i b r a t i o n s  of a free s h a f t  can be w r i t t e n  as 

It i s  c h a r a c t e r i s t i c  of a f r e e  system t h a t  it i s  impossible t o  obtain 

- C l '  

/a 
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1 xco1= - x,; X L l  = 0; 
Ycol= - Yc; Y C O l  =o. ( 9 )  

where x and z a r e  t h e  coordinates  of t h e  s h a f t ' s  cen te r  of m a s s .  

S u b s t i t u t i n g  Eqs. ( 9 )  and (10 )  i n t o  Eq. (8)  and making use of t h e  

-C --& xL - 

f a c t  t h a t  w and w 

t o  t h e  o r thogona l i ty  condi t ion 

are equal t o  zero,  w e  ob ta in  condi t ions analogous 
c02 - c o 1  - 

I i I 

We now s u b s t i t u t e  Eqs. ( 6 )  and ( 7 )  (one a f t e r  ano the r )  i n t o  t h e  
above expressions.  Now, i f  we disregard f r i c t i o n  fo rces  i n  t h e s e  ex- 
pressions ( they  are s m a l l  compared t o  o the r  q u a n t i t i e s )  then t h e  design 
equations w i l l  s implify.  and reduce t o  

where 

58 



From Eqs .  (12) we find 

I 

-I- (bP+ c) m - (ap+ $ ) n  

I n2 - mq 
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I 

-I- (ap+ e ) q - ( b p +  . F:zf).n . -  

while from Eqs .  (13) we get  

S u b s t i t u t i n g  values of &' ( 0 )  ~ ( 0 )  z' ( 0 )  ~ ( 0 )  thus 
Eqs .  ( 6 )  and ( 7 ) ,  we f i n d  

[ ( 6  ,+ e) __ m -(ap+ e) n ] 
4- M i +  n2 - mq 

obtained i n t o  

[ ( b  ,+ e) m - ( ap+ &) n 

- z f  + Mp+ n2- mq 

I (ap+ e) q - ( b  ,+ q) n 

I 

I n2 1; 
60 
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These a r e  p r e c i s e l y  t h e  design i n t e g r a l  equations of forced f l e x u r a l ,  /a 
v i b r a t i o n s  of a f r e e  r o t a t i n g  s h a f t  of a r b i t r a r y  p r o f i l e  subjected t o  

fo rces  , t a k i n g  i n t o  account viscous f r i c t i o n  and wi th  zero modes 
i 

12 

eliminated. 
I n  t h e  case when t h e  pe r tu rb ing  fo rce  i s  

t h e  equations of dynamic compliance. 
In  abbreviated form, Eqs. (15)  and (16) can be represented as 

= 1 N ,  Eqs. (16) become 

where & , &I and & 
x x  

a r e  t h e  i n t e g r a l  operators  which a r e  def ined by terms 
- - _  

i n  b racke t s  i n  Eqs. (15)  and (16), r e spec t ive ly .  
Let us now analyze each of t h e  terms i n  Eqs. (18):  
1. When - P = 0 and a = 0 ,  we have f r e e  v i b r a t i o n s .  

= w2K = 02& 

of f r e e  v i b r a t i o n s .  

Then x = = 

( i f  t h e  s h a f t  s t i f f n e s s  i s  i s o t r o p i c )  r ep resen t  t h e  amplitudes 
x. X - 

2. When w = w and a # 0 ,  5 and 31. a r e  t h e  v i b r a t i o n a l  amplitudes a t  
C - 

resonance i n  t h e  presence of f r i c t i o n .  
3. When w = 0 ,  x = K ; i t s  phys ica l  meaning i s  t h e  " s t a t i c "  d e f l e c t i o n  

2 
of t h e  system when ac t ed  upon by t h e  maximum e x t e r n a l  f o r c e ,  t h e  magnitude 
of which does not depend on t h e  e l a s t i c  curve of t h e  f r e e  v i b r a t i o n s .  

Terms w& and WE give t h e  amplitudes of v i b r a t i o n s  due t o  viscous 
ax- 

f r i c t i o n .  

SOLUTION OF EQUATIONS OF VIBFUTION WITH FRICTION 

We s h a l l  solve t h i s  problem by d i r e c t  i n t e g r a t i o n  of t h e  equations of 
forced v i b r a t i o n s ,  us ing  t h e  method of successive approximations. 

Equations (18) are a system of two parametr ic ,  inhomogeneous, i n t e g r a l  
equations.  It should be remembered t h a t  t h e  following are assumed as known 
when solving t h e s e  equat ions:  n a t u r a l  frequency of t h e  system w imbalance 

A (pe r tu rb ing  f o r c e  

C Y  - 
2 = Aw /E) and viscous f r i c t i o n  c o e f f i c i e n t  a. 
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The formulas f o r  v i b r a t i o n  of a f r e e  s h a f t  which a r e  t h u s  obtained 
can be used t o  construct  a converging process  f o r  successive approxima- 

If one uses  conformal i t e r a t i o n ,  t hen  t h e s e  formulas c l '  t i o n  f o r  w < w 

w i l l  y i e l d  a converging process f o r  w 4  wcl. 
- 

When w > w use can be - - c l  

made of t h e  i t e r a t i o n  method suggested i n  [ 2 ]  f o r  t h e  problem without 
f r i c t i o n .  

We now consider t h e  methods f o r  so lv ing  t h e  equat ions.  

A. -0peLat-ign-aL P r e r e s ~ n ~ n ~ e - C o n d i t i o n s  

Simple i t e r a t i o n .  We cons t ruc t  t h e  ordinary process  of successive /@ 
approximations from t h e  formula 

It may be assumed f o r  s e l e c t i n g  t h e  s t a r t i n g  func t ion  t h a t  

or 
%=.Yo; y=o 

x = y =xo, 

where x i s  t h e  s t a t i c  d e f l e c t i o n  due t o  t h e  e x t e r n a l  f o r c e ,  i . e . ,  K . 
-0 a 

L 

Conformal--it-era&$on. The process of successive approximations i n  
t h i s  case is constructed according t o  t h e  formula 

where C and D a r e  some c o e f f i c i e n t s  which improve t h e  convergence 

of t h e  it& approximation, and which a r e  determined from t h e  assumption t h a t  
t h e  next approximat ion 

11-1 Tl-1 

coincides with t h e  preceding, i . e . ,  
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o r  

Whence 

Coef f i c i en t s  C and D are assumed t o  be constant  over t h e  e n t i r e  
2 -2 

range of  i n t e g r a t i o n  and, consequently,  Eqs. (23)  hold f o r  t h e  s h a f t  sec- 
t i o n  3 = zmax , where t h e  d e f l e c t i o n  func t ions  a r e  a t  maximum. 
i s  t h e  same s e c t i o n  over which t h e  func t ions  a r e  normed, s o  t h a t  t h e  va lues  
of xi a n d a i  are determined from Eqs. (23)  f o r  z = zmax . 
successive approximations can be obtained from Eqs. 

It i s  c l e a r  from Eqs. 
be est imated from c o e f f i c i e n t s  Gi and ]II. 
t h e  b e t t e r  t h e  convergence of process .  

Usually t h i s  

A f t e r  t h i s ,  
( 2 0 )  without d i f f i c u l t i e s .  

( 2 2 )  t h a t  t h e  q u a l i t y  of t h e  approximation can 
The f a s t e r  t hey  approach u n i t y ,  

I n  t h i s  case  conformal i t e r a t i o n  can be used. 
I n  resonance, w = w but  

C Y  - 

X 

Subs t i t u t ing  t h i s  expression i n t o  Eq. ( 2 3 ) ,  we ge t  

Accordingly, E q s .  ( 20 )  w i l l  t a k e  on t h e  form 
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- C . -0EeCaLign-Bggng gegogm-cg gogdLtLogs 

We s h a l l  use t h e  method suggested by A.F..Gurov 121 f o r  t h e  problem 
not involving f r i c t i o n .  The essence of t h i s  method is  t h e  f a c t  t h a t  t h e  
f a s t - inc reas ing  components due t o  i n e r t i a  f o r c e s ,  which appear due t o  t h e  
inexac t i t ude  and approximate na tu re  of t h e  c a l c u l a t i o n s , a r e  e l iminated by 
us ing  t h e  condi t ion of r e c i p r o c i t y  of works; t o  use t h i s  cond i t ion ,  it i s  
necessary t o  f i rs t  determine s e v e r a l  free modes and f requencies  of 
v i b r a t i o n s .  

between two n a t u r a l  f r equenc ie s ,  % . e . ,  
Thus, i n  t h e  case being considered t h e  p e r t u r b a t i o n  frequency w l i e s  

We use i t e r a t i o n  i n  t h e  form 

where K* K* K* and K* a r e  i n t e g r a l  ope ra to r s  of t h e  s t a r t i n g  

"corrected" func t ions  of d e f l e c t i o n s  a t  forced v i b r a t i o n s .  This func t ion  
w i l l  be determined from 

- x 7  Y' ax 

where q, xi a r e  t h e  s t a r t i n g  func t ions ;  
- 

a r e  func t ions  of modes . o f  n a t u r a l  v i b r a t i o n s  or  eigenfunc- /6J 
+lY - 51 

t i o n s  (when t h e  s h a f t  r i g i d i t y  i s  i s o t r p p i c ,  x = q1), and 
T-1 - 

C C are t h e  c o e f f i c i e n t s  of t h e  condi t ion of r e c i p r o c i t y  of TlLY X l L  
work i n  planes x and x, r e spec t ive ly .  

t i o n  mode of e r r o r s  and of terms which appear due t o  inexac t i t ude  of t h e  
c a l c u l a t i o n s  done i n  t h e  process of successive approximations. 

The operat ion which i s  def ined by E q s .  (26)  f r e e s  t h e  d e s i r e d  vibra-  

The unknown C and C w i 1 . l  be found from condi t ions of r e c i p r o c i t y  
21 J 9  

of work, expressed by Eqs .  (8 )  i n  t h e  form 
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We mul t ip ly  E q s .  ( 2 7 )  by or and i n t e g r a t e  t h e  r e s u l t  t h u s  
C 1  C l  

obtained over t h e  e n i t r e  s h a f t ; t h e n  axding s i m i l a r  terms, we ge t  

1 1 

From t h i s ,  us ing  Eq. ( 2 8 ) ,  and denoting for compactness 

we f i n d  

6 5  

I 



b u t ,  as follows from 121 and [ 3 ] ,  t h e  numerators i n  t h e  second terms of 
Eqs. (30) a r e  o r thogona l i ty  c o e f f i c i e n t s .  

Then Eqs . (30) t a k e  on t h e  form 

I I 

From t h i s  we f i n a l l y  ge t  equations f o r  determining t h e  unknown co- 
e f f i c i e n t s :  

Af t e r  determining x + 1 and x. from Eqs. (26.) i n  t h e  f i r s t  1% 
-2 - 1 + 1  

approximation, t h e  operat ion i s  repeated,  i . e . ,  we f i n d  x 2 + 2 ,  'i Y 

- + 2  . . ., x , q u n t i l  two successive approximations w i l l  y i e l d  s u f f i c i e n t l y  

c l o s e  r e s u l t s .  

-h - -  

Afte r  determining x and x , t h e  t o t a l  amplitude of v i b r a t i o n s  of t h e  
n -n- - 

system i s  determined as t h e  modulo of t h e  complex number x + & -n_ - 

and t h e  phase angle (angle  between t h e  l i n e  of a c t i o n  of t h e  fo rce  and t h e  
displacement of t h e  system) w i l l  be 
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Example. Find t h e  amplitudes of v i b r a t i o n s  produced by a per turbing 
force- 
s h a f t  shown i n  Fig.  1, i f  it i s  known t h a t  

= 1 a t  t h e  second d i s k  ( i . e .  , t h e  dynamic compliance) of a f r e e  

I = 0.4 m; 

dl= 0.03 m; 

J2 = 86.10-6 m4; 

mi = m2 = 3 kg; 

d2= 0,04 m; m3 = 5.5 kg; 

pm=7.9.103 kg/m3; Jd = 0.0038 kg- m2; 

Jd2 = 0.00746 kg-m2; 

Jd3 = 0,00392 kg-m2; 

ocl = 3171 sec-1; 

E =0.204.1012 N/m2; 

ul = u2= 30 N-sec/m; 

J 1  = 31 .9.16-8 m4; 

For t h e  sake of b r e v i t y  we s h a l l  confine one c a l c u l a t i o n  t o  t h e  
resonance cond i t ions ,  i . e . ,  t o  t h e  case of w = 3171 sec- l .  The calcu- 
l a t i o n s  s h a l l  use Eqs. (25 ) .  Their sequence, shown i n  t h e  t a b l e ,  i s  
analogous t o  t h e  usua l  i n t e g r a l  methods f o r  so lv ing  v i b r a t i o n  problems 
(see  examples i n  [2 ]  and 131) .  

1. In  l i n e s  1-15 of t h e  t a b l e  a r e  entered and c a l c u l a t e d  t h e  geometric 
and m a s s  parameters of t h e  s h a f t .  

M u l t i p l i e r  1/20 of l i n e  5 ,  obtained from i n t e g r a t i o n  by t h e  t r apezo id  
formula f o r  a s h a f t  broken up i n t o  t e n  equal segments, i s  en te red  i n  t h e  
cohmn " m u l t i p l i e r .  I t  

In order  t o  c a l c u l a t e  t h e  values  of my 2 and q t h e i r  components must 
have i d e n t i c a l  m u l t i p l i e r s .  To achieve t h i s ,  m u l t i p l i e r s  1/20 and 

p Z2(1/2O) a r e  en te red  i n t o  t h e  "mul t ip l i e r "  column of l i n e s  6 and 16  and 

accordingly t h e  "function" of t h e s e  l i n e s  i s  mul t ip l i ed  by t h e i r  recipro-  
c a l s ¶  i . e . ,  20/1 = 0 . 5  and 2 0 / p  13 = 39.5 

m - 

m - 
2. In  l i n e s  16-36 a r e  determined values of K and E' Coeff ic ient  

-2 E' 
791 i n  l i n e  28 i s  t h e  r e c i p r o c a l  of p (1/20)21.  

c o e f f i c i e n t  0.392 i s  t h e  quan t i ty  ( 1,/20)310-6/E, f a c t o r e d  out from t h e  
"mul t ip l i e r "  of l i n e  31. The same operat ion w a s  performed i n  l i n e  35. 
Lines 1-36 a r e  constant  f o r  a l l  t h e  approximations. 

S imi l a r ly  i n  l i n e  32 
m 

3. I n  t h e  f i r s t  approximation y w a s  approximated by K and K. Q 2' -=. 
K and D were determined; t h e  x t hus  obtained served as t h e  b a s i s  f o r  32 -1 1 
t h e  second approximation, e t c .  A l l  t h e  r e i t e r a t e d  approximations start 
wi th  l i n e  37. For compactness i n  c a l c u l a t i o n s ,  we do not consider approxi- 
mations 1 through 3 and consider  i n  d e t a i l  t h e  f o u r t h  approximation 
obtained on t h e  b a s i s  of 

l i n e s  83 and 84, which y i e l d s  s a t i s f a c t o r y  r e s u l t s  ( D  

(and, accordingly,  x' ) , which are given i n  
3 3 

i s  c l o s e  t o  u n i t y ) .  -4 
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TABLE 

I 1 Mult iplying f a c t o r  1 :=[I 1 ( ) , I  Function 
. ~- I 

Ordinal 
mumber 

~ 
- 

-- 

11.2 11.3 

- 

1 

2 

3 

1 

5 
6 

7 

R 

9 

10 

11 

12 

13 

I4 

15 

16 

17 

18 

19 

211 

21 

22 

23 

24 

25 

26 

27 

28 

29 

I :1.0.1 

3,1q 

I 1  

I1 

n 

0 

0 

0 

0 

I1 

n 
0 

' 0  

I) 

0 

0 

n 

R,15 

11,472 

11.472 

0,111 

n , w z  

0, 0472 

0 

0 

0 

n 
0 

u 
n 

0 

0 

5,5 

R , O  

29 ~ R7 

1.65 

4,8 

0,CM 

0,495 

1.029 

0 

0 

0 

0 

0 

0 

0 

0 

0 

(/I 11.5 

R,6 

4fl.H7 

2 * 2  

H,64 

0.18 

0.88 

2,404 

0 

0 

0 

0 

0 

R,6 

51 .R7 

2,75 

13.6 

0.2s 

1,375 

4,659 

0 

0 

0 

0 

0 

0 

0 

0 

0 

5 , s  

R . l i  

710 

11.117.IR 

R, R7 

3.55 

3.3 

1'1.1;4 

213 

U , X  

i .9R 

2.56 

8.014 

127,8 

2.947 

1,0 

1.0 

0 

0 

0 

0 

0 

0 

0 

0 

I : :  
59.009 

0 

I 3  I R7 

3.85 

20,79 

0,49 

2,69 

12,68 

1 ,I1 

2,0  

0,2325 

0,2325 

0,2325 

1.2787 

R.0 

R4.R7 

4,4 

35,D4 

0,64 

3.52 

1R,89 

1 ,n 

4.0 

0,4651 

0.9301 

1.3951 

7,6731 

1,2787 1 10.231 

0,89513 6.13R4 

\ 0.89513 ~ '7,9287 

11,:l 

- .  -_ 
5 , s  

A,G 

%,87 

4.95 

44.4 

I1,Rl 

4.45 

'26,136 

1.0 

6,U 

'-1 5,6 

R.13 

,187 

11,1l3~12 

11l6.H7 

IQ3.5 

5.5 

51, R4 

193.5 

I 

5.8 

RR7 

36,81 

193.5 

1.548 

1 .a 

8,0  
I 

0.6977 0,9302 

2,093 

4.4182 

24.3 

42,204 

21,8701 

35,937 

3,721 

10,232 
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X Y  

Fig. 2. Modes of t h e  E la s t i c  Curves of a Shaft i n  Succes- 
s ive  Approximations. 

In l i n e s  37 through 54 we determine the  operators  wK. and WE' /= -ax ax- 
Constants g9, kx, K'  ( 0 )  and K ( 0 )  are t o  t h e  l e f t  of t h e  columns - ax -x 
of t h e  t ab le .  
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Coeff ic ients  0.0373-10-2 and 0.01865.10-2 i n  l i n e s  52 and 54 a r e  

( a / E) expressions ( I  / 20)3 and ( a  / E) ( E  / 20)2, factored out from 
t h e  respect ive "mult ipl iers"  of l i n e s  51 and 53 and mult ipl ied by w = 3171. 

Since Kt ( 0 ) ,  t h e  mul t ip l i e r  of which i s  (CCA 20/E)( 1/20)2, i s  added ax -1 
t o  t h e  mul t ip l i e r  ( a A  /E)(Z/20)2 i n  l i n e  41, it i s  mul t ip l ied  by 1/20. -1 - 

4. In  l i n e s  55-78 we determine, by analogy with t h e  preceding, 

w2K and w2Kt Coeff ic ient  623.4.10-6 o r  l i n e  76 is  t h e  expression 

A 
-0 

mult ip l ied  by 3171; coe f f i c i en t  311.5.10 

(Pm/E) ( Z/20)3 from t h e  "mult ipl ier"  of l i n e  77 mul t ip l ied  by U2. 

=YL x- 
= ( p  / E ) (  Z/F!O)~ f ac tored  out from t h e  "mult ipl ier"  of l i n e  75, and 

m -  - -6 
of l i n e  78 i s  the  expression 

- 

Fig. 3. Deflections of a Rotating System. 
t- 

The coef f ic ien t  

5. In  l i n e s  79-84 we determine x and (as wel l  as x' and x' ) 

from Eqs. (25) .  Figure 2 shows t h e  e l a s t i c  curves of t h e  shaft i n  t h e  
successive approximations, where it can be seen t h a t  t hese  curves a r e  
p r a c t i c a l l y  i d e n t i c a l  i n  t h e  t h i r d  and four th  approximations. 

6. In  l i n e s  85 through 91  we determine , from Eqs. (33)  and (34) , t h e  
t o t a l  def lec t ions  of t h e  sha f t  and t h e  phase angles.  

The def lec t ions  of a r o t a t i n g  s3stem produced by per iodic  force 
- P = 1 a r e  shown graphica l ly  i n  Fig. 3. 

Calculations f o r  t h e  preresonance and beyond-resonance conditions 
a r e  performed i n  approximately t h e  same manner. In  t h e  f i r s t  case they 
a re  ca lcu la ted  using Eqs. 

of conformal i t e r a t i o n  2 i s  determined from Eq. (24) 
over t h e  normed sec t ion  of t h e  shaf t  E =  0.8. 

-4 4 4 4 

(23)  and i n  t h e  second, using Eqs. (27) .  

SUMMARY 

A n  i n t e g r a l  method w a s  developed f o r  ca lcu la t ing  t h e  v ibra t ions  of a 
f r e e  shaf t  , t ak ing  i n t o  account viscous f r i c t i o n .  
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The formulas thus obtained can be used to calculate the amplitude- 
frequency characteristic of a rotating shaft, taking into account the 
distribution of masses and the effect of gyroscopic moments of the disks. 
In the numerical example presented, the system has two damping devices, 
but the method developed can also be used for a system with a large 
number of damping devices. 
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SELF-INDUCED YIBRATIONS OF AXIAL-COMPRESSOR BLADES 

Candidate of Technical Sciences I . M .  Movshovich 

Stages of modern a x i a l  compressors, which have a l a rge  capaci ty ,  /= 
a r e  subjected t o  high loads and operate  over a wide range of reduced rpm 
Fass,  when operating under nondesign condi t ions,  through a region where 
t h e  blade p r o f i l e s  are streamlined under l a rge  angles of a t tack .  Under 
these  conditions self-induced (na tu ra l )  v ibra t ions  a r i s e  i n  some of t h e  
s tages .  Experimental s tud ie s  of na tu ra l  v ibra t ions  performed when ad- 
j u s t ing  gas turb ine  engines have brought t o  l i g h t  many fea tures  charac- 
t e r i s t i c  of t h i s  phenomenon. 

When na tu ra l  v ibra t ions  ensue, one or severa l  blades s tar t  t o  v ib ra t e  
f irst  and then t h e  v ibra t ions  extend t o  t h e  e n t i r e  blading s tage .  Steady- 
s t a t e  f l exura l  na tu ra l  v ibra t ions  then e x i s t  simultaneously i n  a l l  t h e  
blades of t h e  s tage.  A l l  t h e  blades of t h e  s tage v ib ra t e  with t h e  same 
frequency but with d i f f e r e n t  phases. 
s c a t t e r  of v ibra t ion  s t r e s s e s  i n  ind iv idua l  blades of a given blading 
st  age. 

f e ren t  flow pressures  at  t h e  compressor intake.  This pressure i s  ca l l ed  
t h e  i n i t i a l  pressure.  
a p a r t i c u l a r  property of t h e  given blading set. The s c a t t e r  i n  these  
pressures may be as high as 200-300%. 
t h e  i n i t i a l  , t h e  amplitude of n a t u r a l  v ibra t ions  increases  rap id ly  t o  dan- 
gerous l eve l s .  
na tu ra l  v ibra t ions  i n  t h e  operat ing rpm range. 

Here one can observe an appreciable 

Different  blading s tages  of t h e  same design start t o  v ib ra t e  at d i f -  

The i n i t i a l  pressure inducing na tu ra l  v ibra t ions  i s  

When t h e  pressure i s  increased above 

Hence an engine c e r t i f i e d  for serv ice  should not have 

THE AMPLITUDE-FREQUENCY EQUATION 

Due t o  t h e  unavoidable dimensional deviat ions inherent i n  any manu- 
fac tur ing  process,  t h e  na tu ra l  frequencies of t o r s i o n a l  v ibra t ions  of 
blades have a s c a t t e r  of as much as ?-lo%; however, as w a s  noted above, 
i n  self-induced v ibra t ions  each blade does not v ib ra t e  with i t s  own na tu ra l  
frequency, but r a the r  with a frequency common t o  t h e  e n t i r e  blading s tage.  
The appearance of t h i s  common frequency i s  due t o  in t e rac t ion  between t h e  
v ibra t ing  blades,  hence mathematical descr ipt ion of na tu ra l  v ibra t ions  of 
blades i n  a cascade requi res  consideration of a system with many degrees 
of freedom. In t h e  general  case t h i s  w i l l  be a system of nonlinear equa- 
t i o n s ,  containing as many independent var iab les  and, consequently, as many 
equations,  as the re  a r e  blades i n  t h e  cascade. Solution of such a system 
of equations,  although not d i f f i c u l t  i n  p r inc ip l e ,  requi res  extremely cum- 
bersome ca lcu la t ions  and can be obtained only on computers. The problem i s  
made more complicated by t h e  f a c t  t h a t  t h e  aerodynamic and mechanical i n t e r -  
ac t ion  of t h e  blades v ib ra t ing  i n  a cascade has not been s u f f i c i e n t l y  wel l  
invest igated.  Hence, i n  order t o  construct  i t s  f i rs t  approximation, it i s  
advantageous t o  consider t h e  motion of each blade separa te ly ,  by replacing 
t h e  e f f e c t  of neighboring blades by an ex terna l  per iodic  force ,  t h e  fre- 
quency of which i s  equal t o  t h e  frequency of v ibra t ions  of t h e  e n t i r e  blad- 
ing.  In  t h i s  manner t h e  problem reduces t o  forced v ibra t ions  of a self- 
exci ted system with one degree of freedom. 

/B 
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W e  s h a l l  assume t h e  simplest  scheme of purely flexural v ibra t ions  and 
we s h a l l  consider t h e  v ibra t ions  of a p r o f i l e  which has t h e  reduced mass 
of t h e  en t i r e  blade and t h e  aerodynamic c h a r a c t e r i s t i c s  of i ts  per iphera l  
c ross  sect ion.  
fo r  aerodynamic forces  on t h e  v ib ra t ing  p r o f i l e .  Under these  conditions 
t h e  equation of motion f o r  t h e  p r o f i l e  has t h e  form 

W e  s h a l l  a l s o  make use of t h e  "steady-state hypothesis" 

d2z 

dt2 
m -+xz+ P ,  -Pa= F COS o$, 

d r  
df 

where P,=az2-  i s  t h e  mechanical damping 
mater ia l  and i n  t h e  blade 

i s  t h e  aerodynamic force  ; 1 
2 g  

Pa = - k APpS [CR (i) - CR (io)] 

force  i n  the  
root  ; 

Fcoso)of i s  an ex terna l  per iodic  force  and 

We introduce t h e  nota t ion :  

where a i s  t h e  mismatch between t h e  frequency of t h e  ex terna l  force and 
t h e  na tu ra l  frequency and X 

force.  Then we w i l l  ge t  t h e  following nonlinear d i f f e r e n t i a l  equation 

i s  t h e  reduced amplitude of t h e  ex terna l  
0 

~n estimate of parameter P for an ordinary compressor s tage  y i e lds  /= 
P = 0 . 0 5 ,  which means t h a t  t h e  problem can be solved as a quas i l inear  
problem. 

Van-der-Pol, a f t e r  whom t h i s  equation has been named. A de t a i l ed  study of 
per iodic  solut ions of t h e  Van-der-Pol equation w a s  presented by A.A. 
Andronov and A.A. V i t t  [l] . They have determined t h e  range of "capture" 
of t h e  na tu ra l  frequency of t h e  system by t h e  frequency of t h e  ex terna l  
force and t h e  range of combined v ibra t ions ,  when t h e  na tu ra l  frequency of 
t h e  system and t h e  frequency of t h e  applied force  e x i s t  s ide  by s ide ,  and 
they  have mapped out t h e  s t a b i l i t y  boundaries f o r  both ranges. The 

Periodic so lu t ions  o f  t h i s  equation were f i rs t  considered by 
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parameter which denotes t r a n s i t i o n  from one range t o  another i s  t h e  
l imi t ing  frequency mismatch a 

mismatch, t h e  frequency i s  "captured"; when t h e  mismatch increases ,  
combined v ibra t ions  a r i s e .  

. 
-1im 

In  t h e  case of moderate frequency 

Case of Small Frequency Mismatch 

W e  s h a l l  f i rs t  consider steady-state v ibra t ions  with s m a l l  fre- 
quency mismatch and we s h a l l ,  consequently, seek t h e  per iodic  so lu t ions  
of Eq. ( 2 )  with an ex terna l  force  period of   IT i n  t h e  form 

z=a+p,+p222+ ... 
When LI = 0,  we get  t h e  l i n e a r  generating equation 

t h e  general  so lu t ion  of which has t h e  form 

zo=Mosinz+Nocosr. ( 4 )  

M and N w i l l  be found from t h e  assumption t h a t  t h e  second approxima- 
-0 -0 

t i o n  

z=zo + pzl ( 5 )  

i s  a l s o  per iodic .  Subs t i tu t ing  so lu t ion  ( 5 )  i n t o  Eq. ( 2 ) ,  and equating 
t h e  coe f f i c i en t s  of terms incorporat ing t o  t h e  f irst  power, w e  w i l l  
get  

a 2 -  * c3 '3 Zl + z, =k,, cos 2 -- azo + - zozo+zo +- zo. ( 6 )  C1 C1 

Subs t i tu t ing  t h e  above expression i n t o  Eq. ( 4 ) ,  we ge t  

l a  l a  
4 c1 

4 c1 

1 
1 'f' k o - a N o + M o + - - M ~ + - - M o N ~ +  

+-L 3 c  MoN:+ 5% M i  COST + -aMo-  N o - - ~ M ~ N , -  
4 c1 4 c1 

-r a N i  - 3 5- MiNo- 3 5 N i  sin T + F ,  cos 27 + 
4 c1 4 c1 4 c1 -+ F ,  sin 22 + F,  cos 32 + F ,  sin 37 + F,, 

where F F F F and F are polynomials i n  M and N which are l 1 6  

time-independent. 

t h e  coe f f i c i en t s  of cos10 and s i n r  must be zero: 

-1' *, -3' -4 5 13 -0' 

In  order t h a t  gl obtained from Eq. ( 7 )  be per iodic ,  
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I Mo= Asin?; 
No = A COS 'p, 

( 9 )  

then A i s  t h e  amplitude of v ibra t ions  from t h e  f i rs t  approximation and 
cp i s  t h e  phase difference bet%,,, t h e  ex terna l  force and t h e  displace- 
ment of t h e  v ibra t ing  blade.  

Then t h e  so lu t ion  of system ( 8 )  w i l l  have t h e  form 

k):= kA2[al+ (1 - '571; 
kA2 (10) 

1-- 
4 tan 'p= - 

9 
U 

where & = -(c/cl + 3C /C -l ). 

frequency equation of induced v ibra t ions  i n  a self-exci ted system. 

Eq. ( 2 )  y i e l d  t h e  following inequa l i t i e s  [l]: 

The above so lu t ion  i s  t h e  amplitude- 

The Lyapunov s t a b i l i t y  conditions f o r  per iodic  so lu t ions  of 

which i n  terms of & and cp give,  respec t ive ly ,  

k A 2 > 2  

and 

3 k2A4- kA2+ a2+ 1 >O. 
16 
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The las t  two expressions y i e l d  conditions f o r  t h e  exis tence of s t a b l e  
per iodic  so lu t ions ,  i . e . ,  conditions under which it i s  possible  f o r  a 
self-exci ted system t o  v ib ra t e  with t h e  frequemy of t h e  ex terna l  force  
which "captures" t h e  na tu ra l  frequency of t h e  system. 

/= 

Fig. 1. Amplitude-frequency curves f o r  Compressor 
Blades. 

Figure 1 depic ts  amplitude-frequency curves corresponding t o  per iodic  
solutioii  (10 ) .  They a l s o  show t h e  s t a b i l i t y  boundaries corresponding t o  
conditions (13) and (14). It can be seen t h a t  f o r  any magnitude of t h e  
ex terna l  force k h 2 ,  It i s  posslble  t o  f i n d  a frequency mismatch such t h a t  /78 
Eq. (13) w i l l  be v io la ted .  
match. 
v ibra t ions  s e t  i n .  

This i s  p rec i se ly  t h e  l imi t ing  frequency m i s -  
When t h e  fYequency mismatch i s  higher than t h e  l imi t ing ,  combined 
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Case of Large Frequency Mismatch 

We wr i t e  Eq. (1) i n  t h e  form 

t h e  notat ion here i s  t h a t  previously used. 

f o r  combined v ibra t ions  i n  t h e  form 
Following Stoker 's  p resenta t ion  [3] , we s h a l l  seek t h e  so lu t ion  

z=b,  COS oz + A  COS (T -v); (16 

here  Lf i s  t h e  amplitude of v ibra t ions  at  t h e  na tura l  frequency, 

measured i n  t h e  new t i m e  sca le .  
Subs t i tu t ing  Eq. (16) i n t o  Eq. (15)  and equating t h e  coe f f i c i en t s  

o f s i n  ,UT, cos or., s i n  and cos T i n  t h e  r i g h t  and left-hand s ides  of 
of equations , we w i l l  ge t  , after simple transformations : 

- 

k,bj + 2kA2 = 4; 

2k-b; + kA2 
4 

1- 
tan ?= - 

U 

The only new notat ion here  i s  

Conditions (17) and (19), together  with Eq. (18), y i e l d  

and 

3kA2 
1-- 

4 
a 

tan?= - 
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frequency of free v ibra t ions .  
Studies of s t a b i l i t y  of com- 

bined v ib ra t ions  y i e l d  t h e  s t a b i l -  
i t y  condition 

Equations (20) and c21) are t h e  amplitude-frequency equations of 
combined v lbra t lons  wr l t ten  i n  terms of t h e  amplitude of these  vibra- 
t l o n s  which have t h e  frequency of t h e  ex terna l  force.  Combined vibra- 
t i o n s  must s a t i s f y  Eq. (18), f o r  which reason it i s  a l s o  possible  t o  
write similar equations f o r  t h e  amplitude of v ibra t ions  which have t h e  

/p- 

~. 

-1.0 -05 0 03 7.0 

Fig. 2. Phase Differences between 
Vibrating Blades. 

w e l l  as t h e  combined amplitudes g2 

The amplitude-frequency curves 
and phase s h i f t s  as a funct ion of 
frequency mismatch are shown i n  
Figs. 1 and 2 ,  respec t ive ly .  These 
curves make it possible  t o  explain 
t h e  s c a t t e r  i n  v ib ra t ion  s t r e s s e s  
and t h e  phase s h i f t s  between vi- 
b ra t ing  blades which a r e  observed 
i n  prac t ice .  If w e  assume t h a t  

frequencies within the  l i m i t s  of 
- + 2.5% corresponds t o  a frequency 
mismatch of _a = 5 1, while a scat-  
t e r  of 2 5% corresponds t o  a = 2 ,  
i . e . ,  it reaches a value which 
gives an appreciable s c a t t e r  of t h e  
amplitude of v ibra t ions  and phase 
difference between t h e  blades.  

For t he  case of combined vibra- 
t i o n s  (g2 4 2 )  , Fig.  1 shows am- 
pl i tudes  of v ibra t ions  with t h e  f re -  
quenc5 of t h e  ex terna l  force ,  as 

= 0.05, then a s c a t t e r  of na tu ra l  

+ %  - 

ENERGY RELATIONSHIPS 

W e  s h a l l  first consider t h e  case of less than l imi t ing  frequency 
mismatch, and, using t h e  approximate expression 
t h e  blade as a funct ion of time 

we s h a l l  determine t h e  work done by aerodynamic 

ing forces  R i n  one v ib ra t ion  per iod,  namely -fr 

f o r  t h e  displacement of 

forces  $ and t h e  damp- - 

(23) 
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I 

naA4 Rfr= -4. 
By adding we get  

R=R,+R fr = - x C , A ~  

The work of t h e  ex terna l  force applied t o  t h e  blade i s  

Expressing s ing.  i n  terms of tang. and using Eqs. (lo), we get  t h e  fo l -  
lowing expression fo r  the.work performed by t h e  ex terna l  force 

A s  should have been expected, t h e  t o t a l  work of a l l  t h e  forces  under 
s teady-state  condition i s  zero,  i . e . ,  

R,*+ R,+R, =O. 

It follows from t h e  above equation and from Eq. (25)  t h a t  blades vibra- 
t i n g  with amplitude 

operate ,  as it were, under equilibrium condi t ions,  i . e . ,  t h e  work of 
t he  ex terna l  force on these  blades i s  zero. It can be determined from 
Eq. (10) which blades w i l l  have t h e  so-called c r i t i c a l  frequency m i s -  
match 

Blades with frequency mismatch smaller than a have an amplitude 

and consequently t h e  t o t a l  work of t h e  aerodynamic and 
-cr 

grea ter  than A 
f r i c t i o n  force& w i l l  be negat ive,  i . e .  , t h e  work of t h e  f r i c t i o n  forces  
exceeds t h e  work of aerodynamic forces .  In  order t o  maintain vibra- 
t i o n s  i n  these  blades,  work must be supplied by an ex terna l  per iodic  
force.  Analysis of phase s h i f t s  f o r  blades with below-cri t ical  
frequency mismatch shows t h a t  work from an ex terna l  force i s  ac tua l ly  
supplied t o  them. These blades w i l l  serve as "dampers" of t h e i r  
blading s tage.  

Blades with frequency mismatch g rea t e r  than  [a I have an ampli- 
-2 

tude smaller than A and t h e  t o t a l  work of t h e  aerodynamic and f r i c t i o n  
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forces  w i l l  be pos i t i ve ,  i . e . ,  work of aerodynamic forces  exceeds t h e  
work of frTctfon forces ,  while t he  work of t h e  ex terna l  force i s  nega- 
t i v e ;  consequently, t h e  blades themselves supply work t o  t h e  ex terna l  
force.  In other  words, they  a r e  t h e  sources of t h e  ex terna l  force.  
The ex terna l  force serves f o r  t ransmi t t ing  t h e  excess work of aerody- 
namic forces  from these  blades t o  t h e  "damper" blades.  These blades 
w i l l  be ca l l ed  "exc i te rs .  

It can be seen from Fig. 1 t h a t  t h e  l imi t ing  frequency mismatch 
w i l l  always be g rea t e r  than t h e  c r i t i c a l ;  hence blades subjected t o  
combined v ibra t ions  w i l l  a l s o  be exciter-type blades,  but due t o  t h e  
f a c t  t h a t  they v ib ra t e  with two frequencies,  t h e i r  energet ics  w i l l  be 
d i f f e ren t .  

The equation of motion f o r  a blade with a frequency mismatch 
higher than t h e  l imi t ing ,  i . e . ,  

z,= 6, COS UT+ A COS (Z 1 cp), (29) 

w i l l  be used f o r  determining t h e  work of t h e  aerodynamic and f r i c t i o n  
forces .  The above expression descr ibes ,  i n  t h e  general  case,  when w 
i s  not commensurable with uni ty ,  an almost per iodic  motion, hence t h e  
work w i l l  be determined as an average from t h e  following expressions 

from which we get  

R fi = - 2- 8 (02b; + 2A2b;u9$2A2b;+ A'). (33)  

Adding terms and using Eq. (18) w i l l  give t h e  t o t a l  work of t h e  aero- 
dynamic and damping [ f r i c t i o n a l ]  forces  

For convenience, we s h a l l  r e f e r  t h e  work i n  Eqs. (23)-(25) t o  a 
un i t  of time. Then 
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Since t h e  n a t u r a l  frequencies of a blading set a r e  random, then 
t h e  i n i t i a l  pressure for self-induced v ib ra t ions ,  which depends on t h e  
r a t i o  between t h e  number of t h e  damping and exc i t i ng  blades,  can have 
an appreciable s c a t t e r .  

fo r  which reason we should a l s o  have t h e  condition 
The blading s e t  as a whole i s  not subject  t o  any ex te rna l  forces ,  /E 

We introduce s t i l l  another assumption, namely, t h a t  an iden t i ca l  
ex terna l  per iodic  force  a c t s  on a l l  t h e  blades of t h e  set ,  i r respec t ive  
of t h e i r  pos i t ion  i n  t h e  disk.  This i n  i tsel f  su f f i ces  f o r  determining' 
t h e  i n i t i a l  self- induct ion pressure.  

Using Eqs. (34)  , (37)  and (38) and breaking up t h e  blading s e t  i n t o  
groups with t h e  same frequency mismatch r e l a t i v e  t o  t h e  common frequency 
of t h e  s e t ,  we w i l l  ge t  thc following condition f o r  absence of a periodic 
force  i n  the  s e t  as a whole: 

P 4 

C n i i A :  ( I--  '-: ) -/- C n,A:( 1 + -% 4 R&)==O, 
1 1 

(39) 

where subscr ipt  f per t a ins  t o  a blade with a lower-than-limiting f re -  
quency mismatch, m 

number of groups of such blades;  correspondingly, 2, n 

t h e  subscr ip t ,  number of blades i n  a group and number of groups f o r  
blades with a higher-than-limiting frequency mismatch. 
of our assumption t h a t  t h e  ex terna l  forces  within t h e  s e t  a r e  iden t i ca l  
fo r  a l l  t h e  blades,  we w i l l  ge t  as many equations such as Eqs. (40) and 
( 4 1 )  as the re  a r e  groups of blades: 

i s  t h e  number of blades i n  each group, and E i s  t h e  
-2 

and 9 w i l l  be 
-2 

On the  bas i s  

k;;=kA:[a:+ ( l - E . 3 1  (s=l, 2 .  .. 4). 

From t h e  above two equations,  together  with Eq. (39 ) ,  it i s  possible  
t o  determine kAm2 for each group of blades and thus  also t h e  amplitude; 

1 - 
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and i f  one a l s o  uses Eqs. (10) and (19), then it i s  possible  t o  obtain 
t h e  phase d i f fe rences  between t h e  blades.  
of t h e  pressure of self-i’nduced v ibra t ions ,  i . e . ,  so lu t ion  of Eqs. ( 3 9 ) -  
(41) a l s o  y i e lds  t h e  i n i t i a l  self-induction pressure.  

The i n i t i a l  pressure which is  obtained by solving t h e  above system 
of equations depends on t h e  frequency of t h e  e n t i r e  set on which a l l  
t h e  ca lcu la t ions  were based, The frequency which w i l l  ensure a minimum 
i n i t i a l  self- induct ion pressure,  i . e . ,  minimum vibra t ion  s t a b i l i t y  of 
t h e  s e t ,  w i l l  be prec ise ly  t h e  frequency of v ibra t ions  of t h e  blading. 
In  t h e  preliminary ca lcu la t ions  we have f o r  convenience assumed a com- 
mon frequency which i s  equal t o  t h e  ar i thmetic  mean frequency of t h e  
blading s e t .  

Calculat ions,  which a r e  not presented here due t o  space limita- 
t i o n s ,  w e r e  performed f o r  two a r b i t r a r i l y  assembled s e t s  of blades.  It 
w a s  assumed for s impl ic i ty  t h a t  each blading s e t  consis ted from th ree  
blade groups: 
273 cps,  4 with 280 cps and 18 with a frequency of 287 cps,  which makes 
up th ree  frequency groups, but only two groups with respect  t o  frequen- 
cy mismatch, i . e .  , one group containing 4 blades with mismatch of a 

and 36 blades with mismatch 

not a f f e c t  t h e  amplitude, i . e . ,  t h e  energet ics  of t h e  b lade) .  
No. 2 contains 16 blades with frequency of  273 cps,  8 blades with 280 cps 
and 16 blades with a na tu ra l  frequency of 287 cps,  i . e . ,  m 

% = 0 and m 

The quant i ty  & i s  a function 

/& 

wheel No. 1 held 18 blades with na tu ra l  frequency of 

= 0 
-0 

= 21 ( the  s ign of t h e  separat ion does 

Wheel 

= 8 aind 
-0 

= 32 and a = 2 1, respect ively.  -1 -1 

Calculations f o r  an ordinary,  s e r i a l l y  produced s tage  y i e lds  an 
i n i t i a l  pressure E. 

mm of Hg f o r  t h e  second. If we imagine a s e t  cons is t ing  of blades with 
the  same na tu ra l  f requencies ,  then qn = 600 mm of Hg. 

of TOO mm Hg for t h e  f i r s t  wheel and p 
i n  -in 

of 1260 

CONCLUSIONS 

The assumed scheme f o r  ca lcu la t ing  self-induced v ibra t ions  i n  the  
presence of an ex te rna l  per iodic  force makes it possible  t o  explain the  
s c a t t e r  i n  v i b r a t i o n  s t r e s s e s  i n  blades of t h e  same blading s e t  and the  
phase d i f fe rences  between t h e  blades.  Sca t t e r s  i n  t h e  i n i t i a l  pressure 
which a r e  observed f o r  s e t s  of t h e  same design a r e  a l s o  explained i n  t h i s  
manner. 

s ions ,  namely t h a t  i f  blades are matched up on t h e  basis of t h e i r  
na tu ra l  frequencies,  then it is  possible  t o  tune a l l  t h e  blading sets 
t o  t h e  upper level with respect  t o  t h e  i n i t i a l  pressure.  The promise 
of t h i s  approach f o r  e l iminat ion of self-induced v ibra t ions  i s  t h e  f a c t  
t h a t  it does not requi re  any subs t an t i a l  modification of design. 

The above ana lys i s  can a l s o  serve as a bas i s  f o r  p r a c t i c a l  conclu- 
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The above ana lys i s  has i t s  shortcomings. F i r s t l y ,  we have 
examined only a p r o f i l e  r a the r  than a blade,  secondly, considerat ion 
w a s  given only t o  t r a n s l a t i o n a l  motion of t h e  p r o f i l e ,  while tw i s t ing  
of t h e  l a t t e r  w a s  not considered. For t hese  reasons t h e  r e s u l t s  
which were obtained can be used only f o r  comparison purposes, i . e . ,  
fo r  c l a r i fy ing  t h e  q u a l i t a t i v e  aspect of t h e  problem. 
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COMPUTATION OF VIBRATIONS OF VARIABLE-THICKNESS DISKS 
BY THE R I T Z  METHOD 

Engineer A.V. Karpov 

Vibrations of gas turb ine  engine components a re  a t t r i b u t a b l e  t o  many /84 
f ac to r s  r e l a t e d  t o  the  processes which take place i n  these  machines. Hence, - 
designing a r e l i a b l e  u n i t  with an extended serv ice  l i f e  requi res  one t o  
study t h e  possible  v ibra t ions  of individual  elements, as w e l l  as t h e  engine 
system as a whole. 

A l a rge  number of s tud ie s  were performed (by A. Stodola,  R.W. South- 
wel l ,  A.V. Levin, A.D. Kovalenko, V . Y a .  Natanzon, I . A .  Birger ,  D . V .  Khronin) 
on v ibra t ions  of turbomachine d isks .  

The importance and complexity of these  calculat ions requi re  fu r the r  
development and refinement of ex i s t ing  methods, i n  p a r t i c u l a r  those based 
on t h e  Lagrange and Hamilton pr inc ip les .  Variat ional  methods f o r  solving 
these  problems a r e  e f f ec t ive  (from t h e  point of view of reducing t h e  volume 
of computations) i n  t h e  case when consideration i s  given t o  t h e  e f f ec t  of 
t h e  individual  s t r u c t u r a l  elements of t h e  disk ( r i m ,  body, r a d i a l  r i b s )  on 
t h e  frequencies and modes of i t s  v ib ra t ions ;  here some approaches make it 
possible  t o  obtain formulas convenient f o r  t h i s  kind of ca lcu la t ions ,  s ince 
t h e  geometric parameters of t h e  above elements a re  contained i n  them i n  
t h e  geasra l  form. 

The present paper considers a va r i a t iona l  method f o r  designing var iable-  
thickness  disks  with a r i m  and r a d i a l  r i b s .  The suggested methods f o r  solving 
t h e  problem of v ibra t ions  of intr icately-shaped disks  can i n  pr inc ip le  be 
simyl-ified and used f o r  solving of other  problems of disk v ibra t ions .  

FREE VIBRATIONS OF AN INTRICATELY-SHAPED NONROTATING DISK 

According - t o  Hamilton's p r inc ip l e ,  an e l a s t i c  system which i s  i n  
motion ac tua l ly  undergoes during a time i n t e r v a l  t - t displacements which 

a r e  porport ional  t o  t h e  extremum of the  ac t ion  i n t e g r a l  J, where 
0 1  

1. 

J -J (3- K)df ,  
10 

where E i s  t h e  p o t e n t i a l  energy of t h e  e l a s t i c  system and i s  i t s  k ine t i c  
energy. 

For t h e  case of na tura l  v ibra t ions  of a c i r c u l a r  p l a t e ,  E i s  ex- /Q 
pressed as 

a3 



1111 1111. 111 

Accordingly, K i s  expressed as 

where r i s  t h e  f r e e  radius  of t h e  inner c i r c l e  of t h e  d i sk ,  i s  

i t s  outside rad ius ,  2 i s  t h e  cy l ind r i ca l  r i g i d i t y ,  v a r i i b l e  over t h e  
rad ius ;  i s  t h e  def lec t ion  of t h e  middle plane; 1.1 i s  Poissonls  r a t i o ,  
- r and 0 a re  polar  coordinates,  h i s  t h e  thickness  of t h e  d isk  (which 
i s  var iab le  along t h e  r a d i u s ) ,  and p i s  t h e  dens i ty  of t h e  d isk  mater ia l .  
The def lec t ion  W w i l l  be represented i n  t h e  form 

-0 

W=u(r )cosn  e - c o s p f .  (4) 

where E i s  t h e  c i r c u l a r  frequency of v ibra t ions  and 2 i s  t h e  number of 
nodal diameters. 

Following R i t z ,  we seek t h e  so lu t ion  of Eq. (1) i n  t h e  form 

i -1  

where a a r e  the  sought coe f f i c i en t s  and cp i s  a su i t ab le  function 
i 11 - 

which s a t i s f i e s ,  as a m i n i m u m ,  t h e  geometric boundary conditions.  

extrema1 proper t ies ,  then SJ = 0 ,  or  
Since , according t o  Hamilton’s p r inc ip l e ,  func t iona l  J possesses 

a i  -- - 0. 

We introduce t h e  notat ion 
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Subs t i tu t ing  Eqs. C2j-C41 i n t o  Eq. Cl), and using Eqs .  ( 5 ) - ( 7 ) ,  /8& 
we get  

The above expression i s  a system of homogeneous equations which has 
nonzero solut ions i n  t h e  case when the  determinant made up of coef f ic i -  
en ts  of a i s  equal t o  zero.  From t h i s  follows a frequency equation, 

which serves f o r  determining t h e  na tu ra l  frequency. 

a r e  functions of radius  L~ and t h e  usual method f o r  solving t h e  f r e -  

quency equation cons is t s  i n  in t eg ra t ing  it by sec t ions ;  here it i s  
assumed t h a t  t h e  r a t e  of increase of t h e  d isk  thickness  along t h e  radius  
i s  constant.  

respondingly l a rge  amount of intermediate ca lcu la t ions .  It i s  of i n t e r e s t  
t o  solve Eqs. (8 )  by a method which uses funct ions approximating t h e  
var iab le  thickness  of t h e  d i sk  ( tak ing  i n t o  account t h e  r i m  and the  
r a d i a l  r i b s )  i n  t h e  range of rad ius  va r i a t ions  r t o  r For example, 

f o r  a disk with a l inear ly-var iab le  body thickness  one can use a com- 
binat ion of t h e  following funct ions 

11 

For int r icately-shaped d i sks ,  Q and h which are terms i n  Eqs. ( 8 )  

In  r e a l  d i sks  the  number of such sec t ions  i s  l a r g e ,  requir ing a cor- 

-0 --out' 

11. h= yz , - where ~p i s  an odd number; 

111. h - e  - where m i s  an even number. 

a 

1 -- 
-1 
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Graphs of t hese  funct ions with appropriate  s h i f t  of t h e  coordi- 
na te  or ig in  a r e  represented i n  Fig.  1. The r e a l  thickness  of t h e  disk 
can be obtained wlth an accuracy s u f f i c i e n t  f o r  engineering ca lcu la t ions  
by adding up t h e  abscissas  of funct ions ( I ) ,  (11) and (111) along t h e  
radius .  

It should be noted t h a t  i n  1928 Pich ler  proposed, f o r  use i n  calcu- 
l a t i o n s  r e l a t ed  t o  t h e  def lec t ion  of c i r c u l a r  p l a t e s  of var iab le  thick- 
ness (without t he  r i m  and r a d i a l  r i b s ) ,  t h e  exponential  function 

BX' 

y=e 6 .  as an approximating re la t ionship .  P ich ler  pointed out t h a t  
by appropriately se l ec t ing  coe f f i c i en t  8 ,  it i s  possible  t o  describe a 
wide c l a s s  of variable-thickness p l a t e s .  

/g 

-- 

Fig. 1. Graphs of Functions Approxi- 
mating t h e  Variable Thickness of a Disk 

with a R i m  and Radial  Ribs. 

Example. Let us f ind  i n  t h e  general  form t h e  frequency equation 
of a disk of l inear ly-varying thickness  with a r i m ,  t h e  d isk  cen t r a l  
bore radius  being r (Fig. 2 ) .  -0 

Fig. 2. Schematic Diagram of a D i s k  
with Bore Radius %. 

In  t h i s  case funct ions ( I )  and (11) have t h e  form 

(h/2) ,  = b - k f ;  
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Quantity 2 has the form 

where 

We select 

I = b - + c .  

As is shown by calculations, this selection of the function for 
deflection of the middle surface gives, in many cases encountered in 
practice, the circular frequency p (>-lo% for L = 1 and 3-5% for L =  
= 2) with an accuracy sufficient for engineering purposes. We assume 
further that the disk profile is sufficiently well approximated by a 
third-order parabola (disks with smooth transition from the disk body 
to the rim when the ratio of the average disk thickness to the rim 
thickness is more than 1/3). Then, restricting ourselves to = 1 
and assuming u = 0.3, we get 

[(4 - n2)2 - (5,6 - -1,2d) - 0,67€ f( I - kr + i/y)” 
I - p2 

‘0 

1 4 4 
f -(4d--4na) f -(4n4 +- 1,4n2) r d r -  

r3 r 4  

The above expression can be used to calculate in the first approxi- 
mation the circular frequency E for a different number fl. of nodal diam- 
eters for a number of disks with different geometric parameters &, &, 
- a and 2. 



SUMMARY 

1. A method w a s  presented f o r  v ibra t ion  design of i n t r i c a t e l y -  
shaped disks  by t h e  Ri tz  method, using funct ions approximating t h e  
a c t u a l  thickness  of t h e  disk.  

shaped disks  were given. 

r a d i a l  r i b  thickness  conforming t o  t h e  concept of a t h i n  p l a t e .  

2. Functions f o r  approximating t h e  thickness  of i n t r i c a t e l y -  

3. The method presented i s  su i t ab le  f o r  disks  with a r i m  and 
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THE HYDROSTATIC B W I N G  AS A SOURCE OF VIBRATIONS 

Candidate of Technical Sciences, G.A. Ivanov 

Figure 1 depic ts  schematically a hydros ta t ic  bearing with communi- /& 
ca t ing  chambers and t h e  assumed diagram of pressure d i s t r i b u t i o n  over 
i t s  length.  It i s  assumed t h a t  t h e  bearing uses an incompressible v is -  
cous f l u i d  and t h a t  t h e  flow i n  a l l  t h e  elements of t h e  bearing i s  
laminar. It i s  a l so  assumed t h a t  t h e  stream cons t r ic t ion  coef f ic ien t  
E = 1 and the  sum of pressure lo s ses  5 at t h e  duct i n l e t  and 5 
str  i n  out 

a t  i t s  o u t l e t  i s  appreciably smaller than t h e  pressure l o s t  i n  t h e  duct 
i n  f r i c t i o n ,  i . e . ,  

Fig.  1. Schematic drawing of a hydros ta t ic  bearing with 
communicating chambers. 

We assume t h a t  /= 

(2 1 
where d i s  t h e  s i z e  of t h e  clearance and g i s  t h e  sha f t  diameter. This 
permits us  t o  assume t h a t  t h e  flow of t h e  f l u i d  i n  a l l  t h e  clearances 
between t h e  connecting web of t h e  bearing race  and t h e  shaf t  i s  equiva- 
l e n t  t o  t h e  f l u i d  flow i n  a f l a t  s l o t .  The hydrodynamic e f f ec t  which 
i s  produced a t  t h e  connecting webs is  disregarded. 

It i s  assumed t h a t  t h e  bearing a c t s  as t h e  so-called r o t a t i n g  load,  
t h e  angular ve loc i ty  w ’  of which i s  i n  general  not t he  same as t h e  angu- 
lar  ve loc i ty  of t h e  sha f t .  For a r o t a t i n g  load t h e  volume of f l u i d  
bounded by t h e  5 t h  chamber i s  var iab le .  
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W e  s e l ec t  a s t a t iona ry  coordinate system Xoy  (Fig. 1) and a moving 

-1’ axis OY 

center  0 of t h e  sha f t  which i s  displaced r e l a t i v e  t o  t h e  r i m .  

This ax i s  passes through center  0 of t h e  r i m  and through 

-1 

We now wr i t e  t h e  flow-rate balance equation f o r  t h e  it& chamber 
i n  t h e  form [ s i c ]  

where 

For a multichamber bearing a system of equations analogous t o  Eq. (3)  i s  
s e t  up for each chamber. 

The carrying capaci ty  of t h e  bearing i s  found from 
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where P i s  t h e  f l u i d  pressure a t  t h e  bear ing 's  i n l e t ,  P i s  t h e  

same a t  t h e  bear ing ' s  o u t l e t ;  2 is t h e  length of t h e  bear ing ' s  chamber, 
- 1 i s  t h e  length of t h e  annular connecting web; 2 i s  t h e  shaf t  diameter 
and 0 is t h e  load f a c t o r  of t h e  bearing. 

--in Q U t  

where g i s  t h e  number of chambers. 

The angle between t h e  d i rec t ion  of t h e  load and t h e  d i rec t ion  i n  
which the  shaf t  i s  displaced 

The r a t e  of flow through t h e  bearing 

We s tar t  t h e  ana lys i s  of t h e  load carrying bearing with a three-  
chamber bearing with t h e  r e l a t i v e  dimensions 

I 
- 100; -=loo, - -1;-=02. -- 

D D " 80 80 

m -  b 

where 6 i s  t h e  s i z e  of t h e  r a d i a l  gap, which i s  determined with t h e  0 

shaf t  s i t u a t e d  concent r ica l ly  with respect  t o  t h e  [bear ing ' s ]  r i m .  

For t h e  bearing under consideration w e  assume t h a t  2, t h e  width of 
t h e  connecting web i s  constant €or a l l  t he  chambers. It i s  assumed t h a t  
t h e  sha f t  diameter i s  = 50 mm, t h e  angular ve loc i ty  of t h e  sha f t  and 
t h e  load i s  w = a' = 400 sec-1. 
i n  t h i s  case comes out t o  = 100 m/sec. 

The circumferent ia l  r o t a t i o n a l  speed 

Compressor o i l  with densi ty  of 882 Kg/m3, l~ = 95.7'10-2 N-sec/m2 i s  
se lec ted  as t h e  working f l u i d .  The pressure drop over t h e  bearing aP_ = _P 

--P - = 962 N/m2. 

i n  

out 
91, 
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Figure 2 show curves o f  t h e  load f a c t o r  8 as a funct ion of t h e  
r e l a t i v e  e c c e n t r i c l t y  E f o r  a three-chamber bearing with t h e  above re la -  
t i v e  dimensions. It follows f r o m t h e  f igu re  t h a t  f o r  t h e  same E t h e  
magnitude of f3 varies as a function of two l imi t ing  instantaneous direc-  
t i o n s  of t h e  r o t a t i n g  load,  $ .e . ,  toward t h e  "center of chamber" and 
toward t h e  "connecting web." This means t h a t  due t o  d i f fe rences  i n  t h e  

carrying capaci ty  of t h e  lub r i ca t ing  
l aye r  a source of v ib ra t ions  e x i s t s  i n  
t h e  bearing. Thus, when 0 = 1, t h e  
amplitude of v ib ra t ions  involving dis-  
placement of t h e  center  of t h e  journa l  
i n  t h e  bear ing i s  0.002 mm, while when 
8 = 1.8 t h i s  amplitude i s  0.01 mm. 
Then t h i s  ana lys i s  w a s  appl ied t o  a 
five-chamber bear ing with r e l a t i v e  
dimensions g/D- = 1, k/g = 0.2,  b/6 

100, l/so = 100. 

= 

Here it w a s  assumed 
- 0  

Fig. 2. Load Factor as a 
Function of t h e  Relat ive 
Eccent r ic i ty .  1) Direct ion 
of Displacement toward t h e  
"Connecting Web"; 2 )  Direc- 
t i o n  of Displacement toward 

the  "Center of Chamber." 

1 

2 

t h a t  t h e  sha f t  diameter i s  D = 50 mm 
and t h e  angular speed of t h e  shaf t  and 
t h e  load i s  w = w '  = 4000 sec-l .  The 
previously described compressor o i l  w a s  
again se lec ted  as t h e  working f l u i d .  

chamber bearing has t h e  same load carry- 
ing capaci ty  f o r  any d i r ec t ion  of t h e  
r o t a t i n g  l o a d ' s  vec tor .  This means t h a t  
changing from a three-  t o  a five-chamber 
bearing makes it possible  t o  e l iminate  
undesirable v ibra t ions  of t h e  sha f t  which 
a r e  due t o  d i f fe rences  i n  t h e  carrying 
capaci ty  of t h e  lub r i ca t ing  layer .  

Calculations have shown t h a t  a five- 
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STABILITY OF THREE-LAYER CYLINDRICAL SHELLS 
BEYOND THE ELASTIC LIMIT 

Candidate of Technical Sciences Y.V.Serdyukov 

The present paper examines t h e  s t a b i l i t y  of cy l ind r i ca l  s h e l l s  /& 
cons is t ing  of two outer  l aye r s  interconnected by a f i l l e r  and sub- 
jec ted  t o  a normal pressure and a x i a l  force when t h e  s t r e s s e s  i n  t h e  
bearing l aye r s  exceed t h e  proport ional  l i m i t .  It i s  assumed t h a t  t h e  
thickness  of t h e  bearing l aye r s  and t h e i r  temperatures are d i f f e ren t  
and t h a t  they  may be made from d i f f e r e n t  mater ia l s .  

l i m i t  w a s  considered previously i n  [l] and 141, e t c . ;  however, i n  a l l  
t h e  cases known t o  t h e  author t h e  study w a s  l imi ted  t o  t h e  case of 
bearing l aye r s  of t h e  same thickness  and temperature. These condi t ions,  
as a r u l e ,  do not apply t o  elements of modern a i r c r a f t ,  which has made 
t h e  present inves t iga t ion  necessary.  

The s t a b i l i t y  of three- layer  cy l ind r i ca l  s h e l l s  beyond t h e  e l a s t i c  

This study i s  based on: 

1) t h e  theory of p l a s t i c  deformations; 
2 )  p r inc ip l e  of "continuing loading"; 
3 )  theory of s h e l l s  with l a rge  r a d i i  of curvature;  and t h e  follow- 

ing addi t iona l  assumptions: 

a )  t h e  bearing l aye r s  t ake  up 
( the  Kirchhof f -Love hypothesis hold 

forces  i n  t h e i r  plane and deflect** 
.s f o r  them); 

b) t h e  f i l l e r  t ake  up shearing 
forces  only,  so t h a t  t h e  normal of 
t h e  e n t i r e  sec t ion  remains s t r a i g h t ;  

c )  t h e  t o t a l  thickness  of t h e  
s h e l l  i s  s m a l l  as compared with i t s  
rad ius .  

t es imal  element of t h e  s h e l l ,  sep- 
a ra t ed  by two planes passing through 
t h e  ax i s  of t h e  cyl inder  and two 
p a r a l l e l  c i r c l e s  (Fig.  1). 

It w i l l  be assumed t h a t  i n  t h e  
bearing l aye r s  of t h e  s h e l l  a c t  in-  
t e r n a l  forces  rtl, T-'llY g ' ,  g",  ;I2, 

We s h a l l  consider an i n f i n i -  

El2, E",, t h e  va r i a t ions  of which i n  

each l aye r  ( i n  t h e  absence of ex- 
Fig. 1. Element of a Three-layer t e r n a l  twis t ing  moments),can be rep- 

Cyl indr ica l  She l l .  resented on t h e  bas i s  of t h e  theory 
of p l a s t i c  s t r a i n .  

**Transl. Note: The Russian sentence makes no sense.  
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where BE:, ex:, &xi, 6~f2-are va r i a t ions  of t h e  t e n s i l e  and shear- 
ing  s t r a i n ,  va r i a t ions  i n  curvature and tw i s t ing  of t h e  middle surfaces  
on t h e  bearing l aye r s  [ 2 ] * .  

b22=-d;2= i 12 . B'(1- - 3 K'CJ;); 
hL2 4 

1 
4 

d i  -_ Bi; b L = - p  33- 

here 

where 

i i tangent modulus; E- i s  t h e  secant modulus; 0- 
xo -x - 

s t r e s s e s  i n  t h e  s u b c r i t i c a l  s t a t e  and 0- i s  t h e  general ized s t r e s s .  

i s  t h e  thickness  of t h e  corresponding bearing l aye r ,  & i s  t h e  
t - 

an? OA a r e  normal 
xo - 

i 
e - 

We s h a l l  consider pure bending of an i s o l a t e d  element in .planes /@ 
perpendicular t o  axes 

TL a r e  denoted respec t ive ly  by 6TA 
-2 -If 1 -2f l  

t h e  equilibrium condi t ions,  

and x. I f  t h e  va r i a t ions  of forces  TA and 
1 

i and 6T- , then we w i l l  have, from 

o r ,  on t h e  bas i s  of Eqs .  (1) 

"Subscript f replaces  one or two primes and def ines  t h e  r a t i o  of 
parameters t o  t h e  inner or  outer bearing layer  of t h e  s h e l l ,  respect ively.  
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I 

l i  

where 

. I  * ,  t.sl f l  , G B , , ~ , ,  EE; f l  , Et;,,, - a r e  va r i a t ions  

of t h e  corresponding s t r a i n  i n  t h e  bearing l aye r s  i n  pure bending. 
On t h e  bas i s  of t h e  assumption t h a t  t h e  common normal remains 

s t r a i g h t  w e  have 

z '  and 2'' a re  dis tances  t o  t h e  corresponding neu t r a l  where zll, 2'11, - 
surfaces  (see Fig. l), x1 and x2 are changes i n  t h e  curvatures of t h e  

neu t r a l  surfaces  of t h e  s h e l l .  

common normal and t h e  theory of s h e l l s  with la rge  r a d i i  of curvatures)  
we can wr i t e  

2 

On t h e  bas i s  of assumptions of t h i s  paper ( r e t en t ion  of a s t r a i g h t  

where 43. i s  t h e  r a d i a l  displacement of t he  neu t r a l  surface ( subscr ip ts  
- x and denote d i f f e r e n t i a t i o n  with respect t o  t h e  corresponding co- 
ordinat  e ) . 

Subs t i tu t ing  Eq .  ( 4 )  i n t o  E q s .  (3 )  with reference t o  E q s .  (5), we 
w i l l  get  expressions f o r  t h e  pos i t ions  of t he  neu t r a l  bending surfaces  
i n  the  form 
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The posi t fon of t h e  neu t r a l  surface on to r s ion  (.z' and 2'' ) w i l l  
t - - t  - 

be obtained by considering t h e  twis t ing  of t h e  i s o l a t e d  element and 
equating t h e  sum of va r i a t ions  of forces  s t o  zero (we denote them by 

t S I  
- 

8s; + ss:=o 
or, having reference t o  Eqs .  (1) 

( 7 )  

The va r i a t ions  of t h e  shearing s t r a i n  of bearing l a y e r s ,  y' and t 
y'It on the  bas i s  of t h e  hypothesis of a s t r a i g h t  common normal a re  
- 

On t h e  bas i s  of t h e  assumptions made t h e  r e l a t i v e  t w i s t  of t h e  
neu t r a l  surface x can be represented i n  t h e  form 

12 

(10) , "  
x12=%12=x~2=7QJxu' 

On t h e  bas is  o f  t h e  above expression and Eqs. ( 8 )  and ( 9 )  we get  

Thus, i n  t he  general  case and on the  assumptions made a l l  t h e  th ree  
neu t r a l  surfaces  a r e  at  d i f f e ren t  dis tances  from t h e  middle surfaces  of 
t h e  bearing layers  of t he  s h e l l ;  here t h e  pos i t ion  of  t h e  neu t r a l  SUT- 

face of t w i s t  depends on t h e  s t r e s sed  s t a t e  of t h e  bearing l aye r s ,  while 
t he  posi t ion of t h e  neu t r a l  shearing sur faces ,  i n  addi t ion ,  a l s o  depends 
on t h e  manner i n  which the  s h e l l  i s  deformed. 

of curvature have t h e  form 

/s 

The s t a b i l i t y  equations for a cy l ind r i ca l  s h e l l  with l a rge  radius  
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where T 

We now apply these  equations t o  our problem; t h e  va r i a t ions  of forces  
and moments w i l l  denote those t o t a l  values of forces  and moments i n  
t h e  e n t i r e  cross  sec t ion  of t h e  s h e l l  which can be expressed i n  t h e  
form 

and T a are forces  corresponding t o  t h e  s u b c r i t i c a l  s ta te .  
-1 -2 

i-1 
0 
L 

CT2 = ST:; 
i-1 
2 

i-1 

Subs t i tu t ing  t h e  force and moment var ia t ions  given by Eq. (13) i n t o  
s t a b i l i t y  equations (12), and using Eqs. (l), ( 5 )  and ( 1 0 )  while bearing 
i n  mind t h a t  t h e  va r i a t ions  of t e n s i l e  and shearing s t r a i n s  of t he  
middle surfaces  of t h e  bearing layers  have the  form 

i where g- and a r e  the  displacements .of t h e  middle surfaces  of t h e  
bearing l aye r s  along axes & and Y-, respec t ive ly ,  we get  /99- 
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In addition, on the basis of the hypothesis of retention of 
straight common normal we have 

We have thus obt,ained a system of five differential equations for u-l, 

- ut', 1' , 
are produced when the shell bulges. 
can also be represented in the form 

and E, the five displacements of the bearing layers which 
We assume that these displacements 

ui=Uisin pEsin ncp; 
vi= Vi cos pE cos ncp; 
w = W cos PE sin ncp, 

where 

n is the number of waves which form on the surface when the shell bulges, 
m - is the number of half-waves along the generatrix; 1 is the length of the 
shell, EA. 12 and are the amplitudes of the corresponding displacements. 
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b;2 tL + b;? u - -b;2 n- -bz2n+ 

+ bi2+5n3 

a 
- t L  R 1 -1 0 0 

I 
I 

i 4 
n _ -  

R 1 -1 
I 



Subs t i tu t ing  Eqs.  (17) i n t o  Eqs. (15) and (16) and d iv id ing  out the/= 
trigonometric funct ions,  we w i l l  get  a system of f i v e  l i n e a r  homogeneous 
equations f o r  E', E", X I ,  L'', and W ,  t h e  determinant of which has t h e  
form of Eq. (18), where 

Expanding determinant (18) i n  t h e  fifth-column migors and equating 
it t o  zero,  we get  an expression f o r  t h e  c r i t i c a l  loads 

where A A , &--, L54 and a r e  understood t o  denote t h e  corre- 

sponding minors of t h e  f i f t h  column of determinant (18).  

fo r  which simpler r e s u l t s  a r e  obtained. 

-51' -52 

Let us now consider some pa r t i cu la r  cases  of p r a c t i c a l  importance 

a )  Symmetrical bulging on a x i a l  compression. 
Se t t ing  i n  t h i s  case i n  Eq. (19)  ro = 0 and 9 = 0 ,  we ge t  

2 

where 
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I 

here 

Finding t h e  minimum of Eq. (20)  with respect  t o  u ,  we will get  an ex- 
pression f o r  t h e  c r i t i c a l  compressive force i n  t h e  form 

- T : c r = 2 ] / f A D + B .  (21) 

b )  Case i n  which u2 << ~2 ( t h i s  condition f o r  a s ingle- layer  s h e l l  

In  t h i s  case we disregard i n  Eq. (19)  terms with mul t ip l i e r s  u2 as 
def ines  "medium length" s h e l l s .  

being negl ig ib le  as compared with terms with mul t ip l i e r s  g2, and as a 
r e s u l t  we get 

- - T!$z? = F 14 $ Gp2$ Ln4. (22) 
A4 

where 

here 

e )  S t a b i l i t y  when subjected t o  ex terna l  pressure only and under the  

2 condition p2 << E . 
Se t t ing  i n  Eq.  ( 2 2 )  x13 = 0 and f inding i t s  minimum 

t o  E, we w i l l  get  i n  t h i s  case a formula f o r  t h e  c r i t i c a l  
form 

with respect  

load i n  t h e  

The number of waves f o r  which buckling OCCUI'S can be then 
from 

( 2 3 )  

determined 
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In general, stability calculations on the basis of Eqs. .(.19) and /a 
(22) can be performed by using the method of V.I. Feodos'yev I5J for 
determining the stressed stage of the shell. This is done in the fol- 
lowing sequence. 

1. We specify. a number of values of total deformations E of the 
12 

shell in the axial direction, and then for each E we specify a number 
In - 

of total deformations E in the circumferential direction; deducting the 
2n 

temperature deformations, we find the corresponding force-induced def- 
ormations of the bearing layers of the shell 151 

i i 
1 2 

where E- and E- are the force-induced deformation of the bearing layers, 

i while a- and L..are the linear expansion coefficients and average tem- 
peratures of these layers. 

obtained we determine the effective deformations of the bearing layers 
from [31 

2. On the basis of the magnitudes of force-induced deformations 

where €2 are the effective deformations of the bearing layers. 
e - 

3. From the stress-strain diagrams for the given materials and 
temperatures we find the corresponding effective stresses o l .  e - 

4. We determine the subcritical stresses .in the bearing layers 
of the shell from 131 

and the circumferential and axial forces corresponding to them from 

5. From stress-strain diagrams we determine for each layer its 
secant and tangent moduli, on the basis of which, using Eqs. (19) or 
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(22 ) ,  we ca l cu la t e  t h e  c r i t i c a l  c i rcumferent ia l  force To 

T 
-1 6. We construct  f o r  each E a curve of To* vs  T u ,  according t o  

, s ince  then /I&+ - 2 c r  
0 i s  defined as i n  paragraph 4 above. 

I n  - -2cr  -2 
paragraphs 4 and 5. 

t h e  in t e r sec t ion  of t h i s  curve with t h e  s t r a i g h t  l i n e  To* 

The ac tua l  c r i t i c a l  value To w i l l  be defined at  

= To. 

- 2 c r  

On 
-?cr -7 

t h e  same graph, according t o  paragraph 4 it i s  possible  t o  l a y  off  

values of Eo as a function of T o *  here the  To 
1 

corresponding t o  it To 

point of i n t e r sec t ion  of t h e  curves of To* 

thus  obtained w i l l  have 
-2’ - 2 c r  

, defined by a v e r t i c a l  l i n e  drawn from t h e  
I c r  

vs  To t o  the  in te rsec t ion  
-2cr  -2 

of t h e  curve of To vs To (Fig.  2 ) .  
-1 -2 

Fig. 2. For Determining t h e  

C r i t i c a l  Forces To and To 
-1cr - 2 c r  

f o r  E = Const. 
In  - 

7. We construct  a graph of To vs T from which we est imate  - 2 c r  -1cr’ 

t h e  s t a b i l i t y  of t h e  s h e l l ,  comparing t h e  graph with values of To and 

0 T which a r e  produced by t h e  a c t u a l  loads.  
-1 

For p a r t l c u l a r  cases  when only an a x i a l  force or externa l  pressure 

-2 

i s  appl ied,  t h e r e  w i l l  be no d i f fe rences  i n  p r inc ip l e  when performing 
ca lcu la t ions  on t h e  bas i s  of Eqs. (21)  or (23 ) ,  and these  ca lcu la t ions  
can be performed i n  approximately t h e  same sequence. 
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THE APPLICATION OF CONFORMAL WPPING TO PROBLEMS OF 
THE THEORY OF ELASTICITY 

Candldate of Technical Sciences V.B.  Gorlov 

Many p r a c t i c a l  problems of t h e  theory of e l a s t i c i t y  can be solved 1% i n  t h e  f i n a l  form if one knows t h e  conformal mapping funct ion which 
allows one-to-one mappings of one region onto another. Thus, f o r  ex- 
ample, i f  t h e  known s t r e s s  paths form an isometric g r id  i n  t h e  given 
region, then it i s  poss ib le  t o  obtain a so lu t ion  fo r  another region 
subjected t o  t h e  same s t r e s s  pa t t e rn  i f  one knows t h e  funct ion which 
maps t h e  given region onto t h e  region for which the  so lu t ion  i s  sought. 

However, t h e  der iva t ion  o f  a conformal mapping funct ion even f o r  
a region of t h e  simplest  geometric shape i s  a qui te  complicated t a s k ,  
and frequent ly  runs i n t o  unsoluble mathematical d i f f i c u l t i e s .  

The problem of der iving conformal mapping functions has in t r igued  
many authors.  
and graphical 151 , a l l  qui te  cumbersome and, because of t h e  grea t  d i f -  
f i c u l t i e s  i n  t h e i r  p r a c t i c a l  appl ica t ion ,  very r a r e l y  used. 

Hence, i n  addi t ion t o  t h e  above methods, extensive use i s  made of 
techniques which employ various analogies for deriving mapping func- 
t i o n s .  Among these  a r e  t h e  semiempirical methods based on t h e  e lec t ro-  
hydrodynamic analogy. 

solving f i l t r a t i o n  problems based on electrohydrodynamic analogies.  
Later on, i n  1937 t h i s  method served as a bas i s  f o r  t h e  work by Brad- 
f i e l d ,  Hooker and Southwell 181 i n  which they have suggested an elec- 
t r i c a l  simulation technique for conformal mapping, known as t h e  method 
of orthogonal t r a j e c t o r i e s  or p o t e n t i a l  l i n e s .  This method i s  based on 
r e s to r ing  (s imulat ing)  corresponding orthogonal t r a j e c t o r i e s ,  i . e . ,  

points  as points  of i n t e r sec t ion  of equipoten t ia l  l i n e s .  

e l e c t r i c a l l y  conducting paper [ 2 ] ,  t o  t h e  mapping o f  a c i r c l e  onto a 
given simply-connected region on t h e  condition t h a t  t he  center  of t h e  
c i r c l e  and one of i t s  bounding poin ts  a r e  transformed onto given points  
i n  the  given region. The advantage of t h i s  method i s  t h e  f a c t  t h a t  it 
allows f inding the  conformal mapping function -in a form very convenient 
f o r  appl ica t ions ,  namely i n  t h e  form of t h e  polynomial 

All t h e i r  approaches can be divided i n t o  ana ly t ic  [ 3 ]  

In 1922 Pavlovskiy [ 5 ]  has suggested an e f f ec t ive  technique f o r  

po ten t i a l  l i n e s  and stream l i n e s ,  and determining t h e  corresponding /& 

In  1955 A.G. Ugodchikov 1171 has applied t h i s  method, u t i l i z i n g  

z=w(;)=coc+clc~+ . . . +cp+ . . . , 
where C and C a r e  i n  general  complex coe f f i c i en t s .  -1 -2 

Thus, f o r  example, t h e  funct ion which maps a c i r c l e  of u n i t  rad ius  
onto a spec i f ied  simply-connected region Swhich  lacks  corner po in ts  on 
contour & and which does not have axes of symmetry, has t h e  form 

k -m 



where m i s  t h e  number of corresponding poin ts  i n  conformal mapping and 
c arecomplex coe f f i c i en t s .  
'x_ 

When t h e  region does have an axis of symmetry, which i s  very fre- 
quently t h e  case i n  p rac t i ce ,  t h e  mapping funct ion has a somewhat d i f -  
f e r en t  form 

k-m 

where 9 i s  the  number of axes of symmetry and C are real  coe f f i c i en t s .  

The number of points  i n  conformal mapping depends subs t an t i a l ly  

-k - 

on t h e  complexity of t h e  geometrical shape of coutour L of t h e  given 
region 2. Thus, for an 4 i n  t h e  shape of an e l l i p s e ,  t h e  number of 
corresponding points  i s  8-12, while f o r  a more complex contour,  f o r  
example, a disk with doveta i l  s l o t s ,  t h e  number of such poin ts  i n  
mapping i s  18-25 or  more, i . e . ,  t h e  number of corresponding points  i n  
conformal transrormation increases  with an increase i n  t h e  complexity 
of t h e  geometric shape. It should be noted t h a t  increasing,  i . e . ,  in- 
creasing t h e  number of terms i n  polynomial (1) is  one of t h e  methods f o r  
increasing the  accuracy of conformal mapping by t h e  e l e c t r i c a l  analog 
technique. However, one should be carefu l  when increasing,  s ince  in- 
creasing it excessively may ser ious ly  reduce t h e  accuracy of t h e  mapping. 
This i s  due t o  t h e  following: A s  i s  known, t h e  e l e c t r i c a l l y  conductive 
paper used i s  an iso t ropic  with respect  t o  conduct ivi ty .  For t h i s  rea- 
son t h i s  paper i s  ca l ib ra t ed  p r i o r  t o  use. On t h e  bas i s  of t h i s  c a l i -  
b ra t ion  it i s  possible  t o  determine t h e  s h i f t ,  Ac of a point  belonging 
t o  a given paper cutout r e l a t i v e  t o  i t s  r e a l  pos i t idn .  The cutout i s  

/lo7 

considered s a t i s f a c t o r y  i f  A r  < 0.01 r where r i s  t h e  rad ius  of =ax -1 , -1 

t h a t  point on contour L which i s  fu r thes t  from t h e  coordinate or ig in .  

Fig. 1. Schematic of t h e  Instrument. 
1) Rec t i f i e r ;  2 )  Plug-in Type Resis- 
tance Box; 3 )  Galvanometer; 4) Model. 

The maximum number of correspondence points  g should be se lec ted  s o  
t h a t  t h e  minimum dis tance Ah between two such adjacent points  would 

be grea te r  than A r  , i . e . ,  

-min 

7nax 
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One of t h e  means f o r  increasing t h e  accuracy of analog simulation con- 
sists of i t e r a t i n g  (from 6 t o  15  t i m e s ,  depending on t h e  geometric 
complexity of contour L) t h e  simulation of t he  spec i f ied  contour L, 
with subsequent averaging out of t h e  r e s u l t s .  

A s  can be seen from t h e  above, t h e  accuracy of e l e c t r i c a l  analog 
simulation of conformal mapping depends on a number of f a c t o r s ,  which 
must be taken i n t o  account when using e l e c t r i c a l l y  conducting paper. 
Hence it i s  b e t t e r  t o  use an e l e c t r o l y t i c  bath or a metal f o i l  as 
analogs of a given region. But t h e i r  use i s  a l s o  not f r e e  of d i f f i -  
c u l t i e s .  

In  order t o  determine t h e  coordinates x and of correspondence - - Z L  
points  s, use i s  usua l ly  made of t h e  EGDA-5, 5 1  u n i t ,  or of an ins t ru-  

ment assembled i n  t h e  manner shown i n  Fig.  1. 
The operation of t hese  instruments i s  based on an e l e c t r i c a l  

analogy which cons is t s  i n  t h e  f a c t  t h a t  t h e  orthogonal g r id  of rays  
8 = const and c i r c l e s  with p = const (Fig. 2 )  of t h e  region of t h e  u n i t  
c i r c l e  and i t s  corresponding orthogonal g r id  i n  region S w i l l  be a re- 
f l e c t i o n  of t h e  motion of t h e  current  i n  t h e  conducting medium. Hence, 

spec i f ied  region, then t h e  current  flow l i n e s  and equipotent ia l  l i n e s  
form on it an orthogonal gr id .  Due t o  the  uniqueness [one-to-one cor- 
respondencd] of t h e  conformal mapping, t h i s  g r id  w i l l  coincide with t h e  
g r id  of 8 = const and p = cons t ,  which i s  obtained on conformal mapping 
of a u n i t  c i r c l e  onto region 2. 

f o r  an e l l i p s e  and a region which i s  f i l l e d  by a d isk  with dovetai l -  
shaped s l o t s .  Since these  regions have axes of symmetry, only p a r t s  of 
these  regions,  included between axes o f  symmetry, were cut out from t h e  
e l e c t r i c a l l y  conductive paper f o r  simulation purposes. A spec i f ied  
po ten t i a l  difference w a s  appl ied t o  t h e  cutout (along t h e  sect ioning 
l i n e s )  by-means of busbars. It should be noted t h a t  a poor connection 
between t h e  busbars and t h e  cutout introduces an e r r o r  i n t o  t h e  deter-  
mination of t h e  correspondence po in t s ,  which makes it necessary t o  
manufacture t h e  busbar i n  such a manner t h a t  t i g h t  contact between the  
cutout and busbar be ensured over t h e  e n t i r e  contact surface.  In  addi- 
t i o n ,  i n  order t o  increase t h e  accuracy i n  determining t h e  correspond- 
ence point  on t h e  cu tout ,  it i s  b e t t e r  t o  supply t o  t h e  busbars a 
po ten t i a l  d i f fe rence  exceeding t h e  recommended by 30-50 v o l t s .  After  
coordinates x and x of t h e  correspondence points  a r e  determined t h e  

- 

if a po ten t i a l  d i f fe rence  i s  appl ied i n  an appropriate manner t o  t h e  /le8 - 

This analogy w a s  used f o r  construct ing conformal mapping funct ions 

?I 1-x 

a- 1 
n-m-I 

n -1 107 



p-const @ 

8 1 9 1 1 0 /  1 1 1  12 

Fig. 2. 

are used to determine 

(1) (see Tables 1 and 

The Electrical Analogy Phenomenon. 

coefficients C of the conformal mapping function 
t k  - 

2 ) .  

Table 1 

Coefficients C for an Ellipse ir - 

9 

Table 2 

Coefficients C for a Disk with Dovetail-Shaped Slots 
Y K  - 

I I I I I I 

0 1  I 1 2 1 3 1 4 1  & I  
I I I I I I 

Ck 1 123.22006 I 13.18116 I 8.02388 14.16576 I 0.55554 I -1.40282 

Continued 

( -- - - I8 1 19 

0.15524 I 4.38642 I -0.65808 [ -0.69270 I -0.37074 j 0.02408 10.32936 
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.. . ..  __ Continued 

20 1 21 I 22 1 23 1 24 I 25 
.. .- ~- 

0.59704 I 0.50404 I 0.21970 1 -0.00824 I -0.57486 I 4.16714 

The conformal mapping funct ions obtained i n  t h i s  manner allow us 
t o  construct ,  within a given approximation, t h e  contour L' of a given 
region S. Naturally,  contour L' w i l l  d i f f e r  from t h e  given contour L 
(Pig. 3r. 
formal mapping. A s  i s  known, any machine pa r t  i s  made with some 
tolerance descr ibing i t s  deviat ion from i t s  required geometric shape. 
Hence, t he  c r i t e r i o n  of t h e  required precis ion of conformal mapping 
should be t h e  to le rance  f o r  deviat ion from t h e  geometric shape of t h e  
given machine p a r t ;  a conformal mapping should be regarded as sa t i s f ac -  
fac tory  i f  t h e  s c a t t e r  of points  of contour L' r e l a t i v e  t o  spec i f ied  
contour 4. l i e s  within t h e  manufacturing to le rance .  

This difference i s  governed by t h e  prec is ion  of t h e  con- 

\ 

Fig. 3. Comparison of Contour L' with Specified 
Contour &. 

Alongside with t h e  method of 181, i n  which t h e  coe f f i c i en t s  of t h e  
mapping funct ion (1) a r e  ca lcu la ted  from Eqs. ( 2 )  obtained by in t e r -  
polat ion,  another approach w a s  suggested by G.N. Polozhiy 161 who has 
used t h e  Christoffel-Schwarz i n t e g r a l  fo r  determining t h e  coe f f i c i en t s  
of t h e  mapping funct ion.  
t h i s  function i n  regions with corner points .  Thus t h e  use of e l e c t r i c a l  
analog simulation of conformal mapping has appreciably extended t h e  
c a p a b i l i t i e s  of t h e  mathematical t o o l s  of t h e  theory of e l a s t i c i t y  i n  
solving a number of engineering problems. 

i s  su i t ab le  f o r  simply, as we l l  as doubly-connected regions,  m a k e s  it 
possible  t o  solve a wide range of problems of s t r e s s e s  t o  ca l cu la t e  t h e  

The l a t t e r  method a l s o  allows us  t o  determine 

The above method f o r  determining conformal mapping funct ions which 



stress concentratlon factors in machine parts of complex shape. 
method was used successfully by this author for determinlng the stresses 
and stress concentration factors in a dovetail-shaped turbine-blade 
locking device 111. 

This 
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STABILITY OF THREE-LAYER CYLINDRICAL SHELLS 
I N  THE ELASTIC ANjl INELASTIC REGIONS* 

Candidate of Technical Sciences I . A .  Yefiinov 

The s t a b i l i t y  of three-layer p l a t e s  and s h e l l s  was s tudled  by many 
Soviet and Western s c i e n t i s t s .  However, i n  examining a l l  t h e  work on 
t h e  s t a b i l i t y  of three- layer  s h e l l s  with a r i g i d  f i l l e r  (band pr imari ly  
on t h e  theory of shallow s h e l l s )  it can be seen t h a t  t h e  problem of 
t h e i r  s t a b i l i t y  under combined ac t ion  of severa l  d i f f e r e n t  loads has 
not ye t  been s u f f i c i e n t l y  studied. 

e l a s t i c  l i m i t  of three- layer  cy l ind r i ca l  s h e l l s  with a f i l l e r  made of 
longi tudina l  and t ransverse  corrugations ( these a l s o  include three-  
layer  s h e l l s  i n  which t h e  r i b s  of t h e  corrugation l i e  along a low- 
p i t ch  ( h e l i x )  subjected t o  separate  or combined ac t ion  of severa l  kinds 
of loads.  It i s  assumed t h a t  a purely p l a s t i c  condition e x i s t s  i n  t h e  
bearing l aye r s  a t  t h e  i n s t a n t  of buckling and t h a t  t h e  f i l l e r  behaves 
e l a s t i c a l l y .  The f i l l e r  i s  regarded as continuous and or thot ropic ,  
capable of tak ing  up longi tudina l  forces  and moments ( t h e  res i s tance  
of t h e  corrugation t o  longi tudina l  forces  and moments w a s  not con- 
s idered i n  [ 2 ] ) ,  t h e  bear ing l aye r s  a r e  i so t rop ic ,  have t h e  same thick-  
ness and i d e n t i c a l  mechanical cha rac t e r i s t i c s .  The subs t an t i a l  d i f f e r -  
ence between our work and t h a t  of [l] and [ 4 ]  (which are based on t h e  
theory of shallow s h e l l s )  i s  t h e  f a c t  t h a t  i n  considering t h e  deforma- 
t i o n  of t h e  f i l l e r  i n  t h e  clrcumferent ia l  d i r ec t ion  it does not consider 
t h e  f a c t  t h a t  t h e  s h e l l  l ac tua l ly ]  i s  not shallow, which i n  t h e  f i n a l  
count increases  t h e  accuracy of r e s u l t s  f o r  s u f f i c i e n t l y  long s h e l l s  121. 

The present paper considers t h e  " s m a l l  scale"  s t a b i l i t y  beyond t h e  

We introduce t h e  following nota t ion  

u Y U  v v a r e  t h e  displacements of po in ts  on middle surfaces  
s n  a u t  ' i n '  -out 

of t h e  ins ide  and outs ide bearing l aye r ,  land t h e  v e l o c i t i e s  of these  
displacements], respec t ive ly ;  w = w = w; 4 i s  t h e  thickness  of t h e  

i n  out 
bearing l aye r s ;  cis t h e  thickness  of t h e  f i l l e r ;  R i s  t h e  radius  of t h e  
middle surface of t h e  f i l l e r ;  L i s  t h e  length  of t h e  s h e l l ;  5 i s  a di-  
mensionless coordinate ,  measured from t h e  edge of t h e  s h e 1 l ; a i s  an angu- 
lar  coordinate,  measured from a spec i r ied  sec t ion ;  g i s  t h e  number of 
wave halves ,  which a r e  formed on bulging along t h e  genera t r ix ;  9 i s  t h e  
number of waves forming along t h e  circumference of t h e  s h e l l ;  i s  t h e  
a x i a l  force;  9 i s  t h e  ex terna l  rormal pressure,  and 5 i s  t h e  reduced 
shearing modulus i n  a plane perpendicular t o  t h e  r i b s  of t h e  corrugation. 

t i o n s  of e l a s t i c  s t a b i l i t y  [ 3 ]  , and following t h e  same approach as [ 2 ]  , 
w e  w i l l  ge t  a system of f i v e  equations for t h e  f i v e  unknowns g, v, w , ~ ,  
and 6. These equations have a s t ruc tu re  s i m i l a r  t o  t h a t  of equations 
f o r  t h e  e l a s t i c  problem 

Using t h e  scheme of t h e  deformed s t a t e  assumed i n  der iving t h e  equa- 

- 

*The pa r t  of t h e  repor t  per ta in ing  t o  e l a s t i c  s t a b i l i t y  of three- 
l aye r  cy l ind r i ca l  s h e l l s  under combined loads i s  published i n  [2 ] .  
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The above expressions a r e  equations of s t a b i l i t y  of a three-layer 
cy l ind r i ca l  s h e l l  with a r i g i d  or thot ropic  f i l l e r ,  when t h e  f i l l e r  
i t s e l f  behaves e l a s t i c a l l y ,  while t h e  bearing layers  a r e  s t ressed  
beyond t h e  e l a s t f c  l i m i t .  From t h i s  system of equations it i s  possible  
t o  ge t ,  as p a r t i c u l a r  cases ,  t h e  equation of s t a b i i i t y  of a three-layer 
cy l lnd r i ca l  s h e l l  with a f i l l e r  made of longi tudinal  as wel l  as t rans-  
verse corrugations.  

longi tudina l  corrugation i s  acted upon by an a x i a l  force and a uniform 
t ransverse  pressure.  Then from 121 we get  t h a t  

We s h a l l  consider t h e  case when t h i s  s h e l l  with a f i l l e r  made of 

So = 0, 6,, b3, = bz3 =bsz = 0, ( 2  1 

u = w x ,  v2=o. ( 3 )  

and from Eq.  I33 

Making subs t i t u t ion  

x = m ,  dy=RaY 

and using Eqs .  ( 2 )  and ( 3 ) ,  we reduce Eqs. (1) t o  t h e  form 

where 

( 4 )  
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Assuming t h a t  t h e  edges of t h e  s h e l l  are f r e e l y  supported, we s h a l l  
assume a solut ion f o r  Eqs.  (5 )  i n  t h e  form 

I U=U,cospEsinncp; 
V = V o  sin pE cos ncp; 
o =coo sin pE sin ncp; 
P = Bo sin pt COS ncp, 

and ,k3 are a r b i t r a r y  constants ,  and 

U=- mxR 
' I '  

0 
where U -0' %s wo 

Here t h e  boundary conditions f o r  f r e e  support of edges [ 3 ]  a r e  satis- 
f ied*,  i . e . ,  

Subs t i tu t ing  Eqs  . ( 6 )  i n t o  Eqs . (5 )  and performing operat ions 
s imilar  t o  those performed i n  t h e  e l a s t i c  problem [3 ] ,  we w i l l  get** 

*If t h e  length of t h e  s h e l l  i s  1 > 2g, then t h e  r e s u l t s  obtained can 
be used a l so  for other conditions a t  t h e  edges, because these  conditions 
then have a very s m a l l  e f f ec t  on t h e  magnitude of t h e  c r i t i c a l  load [ 5 ] .  

**This r e s u l t  (without tak ing  i n t o  account t h e  work performed by 
t h e  corrugation t o  r e s i s t  a x i a l  loads)  w a s  obtained i n  [ 2 ] .  



This expression can be used f o r  determining t h e  c r i t i c a l  load f o r  a three-  
l aye r  cy l ind r i ca l  s h e l l  with a f i l l e r  made of longi tudina l  corrugation 
subjected t o  the  combined ac t ion  of an axial  force and a t ransverse  pres- 
sure  beyond t h e  e l a s t f c  l i m i t ,  

In  t h e  case when only t h e  normal pressure i s  ac t ing ,  we get  f rom, 
Eq. ( 9 )  with reference t o  t h e  f a c t  t h a t  

Tt=O; q5-9 CT R 

t h a t  

We s h a l l  now consider a three- layer  cy l ind r i ca l  s h e l l  with a f i l l e r  
made of t ransverse  corrugation when subjected t o  t h e  same loads.  
t h i s  case,  according t o  131 

In 

I' : z w  "+--; v,-o. 

Subs t i tu t ing  as i n  Eq. ( 4 )  and using E q s .  ( 2 )  and (lo), we reduce E q s .  
(1) t o  t h e  form 
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where 

In t h e  case cf a s h e l l  f r e e l y  supported at the  edges, we assume a 
so lu t ion  of Eq .  (11) i n  t h e  form 

I U =U, cos pk sin np: 
V = I', sin pE cos ncp: 
(0 = w,, sin p! sin ncf; 
a = o0 cos pE sin ncp, 

where %, G, w a r e  a r b i t r a r y  constants ,  while 1-1 i s  defined by 

Eq.  ( 7 ) .  In t h i s  case conditions (8) of f r e e  support of t h e  edges a r e  
sat i s f  Ted. * 
formations, we get  

and c1 
0 0 

Subs t i tu t ing  Eq .  (12) i n t o  Eq.  (11) and performing t h e  usual  t rans-  

- - - -_ _ _ _ ~  - -- . .  

*We note ,  t h a t ,  by v i r t u e  of Eq. (lo), condition (8)  follows from 
E q s .  (1) and ( 4 ) .  
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This expression can be used t o  determine t h e  c r i t i c a l  load f o r  a three-  
layer  cy l ind r i ca l  s h e l l  with a f i l l e r  made of t ransverse  corrugation 
subjected t o  a combined axial  force and t ransverse  pressure beyond t h e  
e l a s t i c  l i m i t .  

Since Eqs. ( 9 )  and (13) contain coe f f i c i en t s  kl,, k12 and b which -22  

themselves a r e  funct ions of t h e  applied loads ,  it i s  expedient t o  cal-  
cu la te  t h e  c r i t i c a l  loads by means of successive approximations. Here 
integers  z* and E should be se lec ted  ( m  = 1, 2 ,  3 ,  . . . ; n = 0,  2,  3, 4, - 
...) so as t o  obtain a minimum f o r  e i t h e r  2, 0 o r  T, 0 (while t he  other 

quant i ty  i s  held constant ) .  

single-layer s h e l l  
When = 0 and & = 2 t  Eqs. (9)  and (13) become an expression for a 

*Is contained i n  Eq. ( 7 )  f o r  p .  
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